

Affordable On-line Dialogue Policy Learning — Hybrid-Intelligent Approaches

SJTU SpeechLab Annual Academic Meeting 05/11/2018

Our Team

Prof. Kai Yu (俞凯教授)

Lu Chen (陈露)

Ph.D. Candidate

Cheng Chang(常成)

Master

Zihao Ye (叶子豪) Undergrad

Xiang Zhou (周翔)
Undergrad

Runzhe Yang (杨闰哲) Undergrad

Overview

Affordable Online Dialogue Policy Learning

Hybrid-Intelligent Task-Oriented SDSs

2 papers at EMNLP 2017 and 1 short paper at EACL 2017

- What's a Task-Oriented Spoken Dialogue System (SDS)?
 - 1. Task-Oriented SDSs
 - 2. Dialogue Policies
 - 3. Reinforcement Learning
- The Cold Start Problem
 - 1. A Human-in-the-Loop Solution
 - 2. A Complete Companion Teaching Framework
 - 3. Replacing Human Teachers with Rule-Based Systems
- Summary

Siri

Introduction

What's a Task-Oriented Spoken Dialogue System?

Hi Siri how's the weather today

What's a Task-Oriented Spoken Dialogue System?

What's a Task-Oriented Spoken Dialogue System?

What's a Task-Oriented Spoken Dialogue System?

- Required to satisfy user goals
 - e.g., restaurant reservation, weather information query

What's a Task-Oriented Spoken Dialogue System?

- Required to satisfy user goals
 - e.g., restaurant reservation, weather information query
- Required to make multi-round interaction
 - to maintain the context and the user intention

What's a Task-Oriented Spoken Dialogue System?

- Required to satisfy user goals
 - e.g., restaurant reservation, weather information query
- Required to make multi-round interaction
 - to maintain the context and the user intention
- Required to deal with **uncertainty**
 - errors from both recognition and understanding

System: East Pittsburg Bus Schedules. Say a bus route, like 28X, or say I'm not sure.

hello(), request(route), example(route=28x), example(route=dont_know)

User: 61A

SLU: 0.77 inform(route=61a)

0.12 inform(route=61)

0.01 inform(route=61d)

System: Okay, 61A. To change, say go back. Where are you leaving from?

impl-conf(route=61a), example(act=goback), request(from)

User: Downtown

SLU: 0.59 inform(from.desc=downtown)

0.10 inform(from.desc=from downtown)

System: Okay, downtown. You can always say go back. And where are you going to?

impl-conf(from.desc=downtown), example(act=goback), request(to)

User: East Pittsburgh East Pittsburgh

SLU: 0.25 inform(to.desc=pittsburgh)

User: Downtown

SLU: 0.59 inform(from.desc=downtown)

0.10 inform(from.desc=from downtown)

System: Okay, downtown. You can always say go back. And where are you going to?

impl-conf(from.desc=downtown), example(act=goback), request(to)

User: East Pittsburgh East Pittsburgh

SLU: 0.25 inform(to.desc=pittsburgh)

Intent-level interaction

Dialogue Act: acttype-slot-value, e.g. inform(route=61a)

User: Downtown

SLU: 0.59 inform(from.desc=downtown)

0.10 inform(from.desc=from downtown)

System: Okay, downtown. You can always say go back. And where are you going to?

impl-conf(from.desc=downtown), example(act=goback), request(to)

User: East Pittsburgh East Pittsburgh

SLU: 0.25 inform(to.desc=pittsburgh)

Intent-level interaction

Dialogue Act: acttype-slot-value, e.g. inform(route=61a)

User: Downtown

0.59 inform(from.desc=downtown) SLU:

Dialogue Acts

0.10 inform(from.desc=from downtown) (probability distribution)

Okay, downtown. You can always say go back. And where are you going to? System:

impl-conf(from.desc=downtown), example(act=goback), request(to)

User: East Pittsburgh East Pittsburgh

0.25 inform(to.desc=pittsburgh) SLU:

Intent-level interaction

Dialogue Act: acttype-slot-value, e.g. inform(route=61a)

User: Downtown

0.59 inform(from.desc=downtown) SLU:

Dialogue Acts

0.10 inform(from.desc=from downtown) (probability distribution)

Okay, downtown. You can always say go back. And where are you going to? System:

impl-conf(from.desc=downtown), example(act=goback), request(to)

User: East Pittsburgh East Pittsburgh

Dialogue Acts

SLU:

0.25 inform(to.desc=pittsburgh)

Intent-level interaction

Dialogue Act: acttype-slot-value, e.g. inform(route=61a)

 $\texttt{Dialogue_Manager}: \Delta(\texttt{ACT}_{user}) \rightarrow \texttt{ACT}_{sys}$

User: Downtown

0.59 inform(from.desc=downtown) SLU:

Dialogue Acts

0.10 inform(from.desc=from downtown) (probability distribution)

Okay, downtown. You can always say go back. And where are you going to? System:

impl-conf(from.desc=downtown), example(act=goback), request(to)

User: East Pittsburgh East Pittsburgh

Dialogue Acts

SLU:

0.25 inform(to.desc=pittsburgh)

The "brain" of SDS?

 $exttt{Dialogue_Manager}: \Delta(exttt{ACT}_{user})
ightarrow exttt{ACT}_{sys}$

- Required to satisfy user goals
- Required to make multi-round interaction
- Required to deal with **uncertainty**

- igstar Dialogue_Manager : $\Delta(\mathtt{ACT}_{user})
 ightarrow \mathtt{ACT}_{sys}$ dialogue acts do not encode the user goal & context
- Required to satisfy user goals
- Required to make multi-round interaction
- Required to deal with **uncertainty**

The "brain" of SDS?

Dialogue State (Probability Distribution)

```
= Goal x Current Semantics x History
e.g. (from.desc = ?, to.desc = ?, route =?)
```


User Dialogue Acts (probability distribution)

Dialogue Manager - State Tracker

User Dialogue Acts (probability distribution)

User Dialogue Acts (probability distribution)

User Dialogue Acts (probability distribution)

How do we build the "brain"? (esp. to find good policy?)

 $exttt{Dialgue_Policy_Maker} \quad \Delta(exttt{STATE})
ightarrow exttt{ACT}_{sys}$

How do we build the "brain"? (esp. to find good policy?)

Rule-Based Methods

- hand-craft rules, "safe" but not "flexible".

How do we build the "brain"? (esp. to find good policy?)

Rule-Based Methods

- hand-craft rules, "safe" but not "flexible".

Data-Driven Methods

learn from interactions, dialogue manager is evolvable.

How do we build the "brain"? (esp. to find good policy?)

Rule-Based Methods

- hand-craft rules, "safe" but not "flexible".

Data-Driven Methods

- learn from interactions, dialogue manager is evolvable.
- convert to sequential decision make problems.

Data-Driven Methods

- convert to sequential decision make problems.

Data-Driven Methods

- convert to sequential decision make problems.

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma
angle$$

State Space

Data-Driven Methods

- convert to sequential decision make problems.

$$\langle S, A, \mathcal{P}, r, \gamma \rangle$$
State Space Action Space

Data-Driven Methods

- convert to sequential decision make problems.

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma \rangle$$

State Space Action Space

Stochastic
$$\mathcal{P}(s'|s,a)$$

Transition Kernel e.g.
$$\mathcal{P}(S_0|S_1, a_0) = 0.7$$

Data-Driven Methods

- convert to sequential decision make problems.

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \overset{\boldsymbol{r}}{\boldsymbol{r}}, \gamma \rangle$$

State Space Action Space

Stochastic
$$\mathcal{P}(s'|s,a)$$

Transition Kernel e.g. $\mathcal{P}(S_0|S_1, a_0) = 0.7$

Reward
$$r: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$$

Function e.g.
$$r(S_1, a_0) = 3.5$$

Data-Driven Methods

- convert to sequential decision make problems.

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \overset{\boldsymbol{r}}{\boldsymbol{r}}, \gamma \rangle$$

State Space Action Space

Stochastic
$$\mathcal{P}(s'|s,a)$$

Transition Kernel e.g. $\mathcal{P}(S_0|S_1, a_0) = 0.7$

Reward
$$r: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$$

Function e.g.
$$r(S_1, a_0) = 3.5$$

 $\gamma \in [0,1)$ is a discount factor

Data-Driven Methods

- convert to sequential decision make problems.

State Space

 $\Delta({\sf STATE})$ Dialogue State (Probability Distribution)

Action Space

 ACT_{sys}

Dialogue Act

acttype-slot-value e.g. inform(route=61a)

Reward Function:

$$r_t = r_t^{turn} + r_t^{\texttt{succ}}$$

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \overset{\boldsymbol{r}}{,}, \gamma \rangle$$

State Space Action Space

Stochastic $\mathcal{P}(s'|s,a)$ Transition Kernel e.g. $\mathcal{P}(S_0|S_1,a_0)=0.7$

Reward

$$r: \mathcal{S} imes \mathcal{A}
ightarrow \mathbb{R}$$

Function e.g. $r(S_1, a_0) = 3.5$

 $\gamma \in [0,1)$ is a discount factor

Goal: find optimal policy π such that

$$v^\pi(s) := \mathbb{E}_{ au \sim (P,\pi)|s_0 = s} \left[\sum_{t=0}^\infty \gamma^t r(s_t, a_t) \right]$$
 is maximized.

Solve by Value-Based Reinforcement Learning

Markov Decision Processes (MDPs)

Goal: find optimal policy π such that

$$v^\pi(s):=\mathbb{E}_{ au\sim(P,\pi)|s_0=s}\left[\sum_{t=0}^\infty \gamma^t r(s_t,a_t)
ight]$$
 is maximized.

Solve by Value-Based Reinforcement Learning

- $Q(s_t, a_t)$ represents the expected total reward after take the action a_t at the state s_t

$$Q(s_t, a_t) = r_t + \gamma \max_{a'} Q(s_{t+1}, a')$$

Markov Decision Processes (MDPs)

Goal: find optimal policy π such that

$$v^\pi(s):=\mathbb{E}_{ au\sim(P,\pi)|s_0=s}\left[\sum_{t=0}^\infty \gamma^t r(s_t,a_t)
ight]$$
 is maximized.

Solve by Value-Based Reinforcement Learning

- $Q(s_t, a_t)$ represents the expected total reward after take the action a_t at the state s_t

$$Q(s_t, a_t) = r_t + \gamma \max_{a'} Q(s_{t+1}, a')$$

Decision: $a_t = \max_{a_t} Q(s_t, a_t)$

Markov Decision Processes (MDPs)

Goal: find optimal policy π such that

$$v^{\pi}(s) := \mathbb{E}_{\tau \sim (P,\pi)|s_0 = s} \left| \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right|$$
 is maximized.

Solve by Value-Based Reinforcement Learning

- $Q(s_t, a_t)$ represents the expected total reward after take the action a_t at the state s_t

$$Q(s_t, a_t) = r_t + \gamma \max_{a'} Q(s_{t+1}, a')$$

Decision: $a_t = \max_{a_t} Q(s_t, a_t)$

Training: $Q(s_t, a_t, \theta)$ is approximated by NN

$$l(\theta) = \mathbb{E}_{s,a \sim \pi_{\theta}} [(Q_{target} - Q(s_t, a_t, \theta))^2]$$

User Model: Simulate User Reactions

Error Model: Simulate the ASR and SLU errors

The Cold Start Problem

Rule-Based Methods —

Data-Driven Methods

The Cold Start Problem

Rule-Based Methods — Data-Driven Methods

Unsafe Policy Behavior (Solvable) 🗸

Efficiency reflects how long it takes for the on-line policy learning algorithm to reach a satisfactory performance level.

Unsafe Policy Behavior (Solvable) ✓

Efficiency reflects how long it takes for the on-line policy learning algorithm to reach a satisfactory performance level.

Safety* reflects whether the initial policy can satisfy the quality-of-service requirement in real-world scenarios during on-line policy learning period.

- * Most previous studies of on-line policy learning have been focused on the *efficiency* **issue**, such as
 - Gaussian process reinforcement learning (GPRL) (Gasic et al., 2010),
 - Deep reinforcement learning (DRL) (Fatemi et al., 2016; Williams and Zweig, 2016; Su et al., 2016), etc.

- * However, *safety* is a prerequisite for the efficiency to be achieved.
 - **Reason**: an unsafe on-line learned policy can consequently fail to attract sufficient real users to continuously improve the policy, no matter how efficient the algorithm is.
 - **Urgency**: on the *safety* **issue** which little work has been done.

Traditional RL Framework

Companion Teaching Framework

On-line Dialogue Policy Learning with Companion Teaching Lu Chen, Runzhe Yang, et.al., EACL 2017 http://aclweb.org/anthology/E/E17/E17-2032.pdf

Runzhe Yang Cheng Chang Zihao Ye Xiang Zhou

Teaching Strategies

Teaching via Critic Advice (CA)

Teaching Strategies

Teaching via
Critic Advice (CA)

Teaching via
Example Action (EA)

Teaching Strategies

Teaching via Critic Advice (CA)

Teaching via
Example Action (EA)

Teaching via Example Action with Predicted Critique (EAPC)

Training with a Replay Buffer

Teaching via
Critic Advice (CA)

Teaching via
Example Action (EA)

Teaching via Example Action with Predicted Critique (EAPC)

$$(s_t, a_t, s_{t+1}, r) \sim \mathcal{D}_{replay}$$

Training with a Replay Buffer

Teaching via
Critic Advice (CA)

Teaching via
Example Action (EA)

Teaching via Example Action with Predicted Critique (EAPC)

$$(s_t, a_t, s_{t+1}, r) \sim \mathcal{D}_{replay}$$

$$l(\theta) = \mathbb{E}_{s,a \sim \pi_{\theta}} [(Q_{target} - Q(s_t, a_t, \theta))^2]$$

$$Q_{target} = r + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}, \theta)$$

- Dataset: DSTC-2, Teaching Budget: 1500 turns
- Simulated Teacher: a well-trained policy model with success rate 0.7

Safety Evaluation

Efficiency Evaluation

- Dataset: DSTC-2, Teaching Budget: 1500 turns
- Simulated Teacher: a well-trained policy model with success rate 0.7

Safety Evaluation

Efficiency Evaluation

- Dataset: DSTC-2, Teaching Budget: 1500 turns
- Simulated Teacher: a well-trained policy model with success rate 0.7

Safety Evaluation

Efficiency Evaluation

When to teach? (Economically Utilize Teaching Budget)

Teaching Scheme = Teaching Heuristic + Teaching Strategy

Runzhe Yang* Cheng Chang* Lu Chen Xiang Zhou Prof. Kai Yu

When to teach? (Economically Utilize Teaching Budget)

Teaching Scheme = Teaching Heuristic + Teaching Strategy

Affordable On-line Dialogue Policy Learning
Cheng Chang*, Runzhe Yang*, et.al., EMNLP 2017
http://www.aclweb.org/anthology/D/D17/D17-1234.pdf

Runzhe Yang* Cheng Chang* Lu Chen Xiang Zhou Prof. Kai Yu

When to teach? (Economically Utilize Teaching Budget)

State Importance

Torrey and Taylor (2013):

$$I(s) = max_a Q_{(s,a)} - min_a Q_{(s,a)}$$

Teach when the current state is IMPORTANT:

$$I(s) > t_{si}$$

Teaching Scheme = Teaching Heuristic + Teaching Strategy

When to teach? (Economically Utilize Teaching Budget)

State Importance

Torrey and Taylor (2013):

$$I(s) = max_a Q_{(s,a)} - min_a Q_{(s,a)}$$

Teach when the student is UNCERTAIN:

$$I(s) < t_{su}$$

Teaching Scheme = Teaching Heuristic + Teaching Strategy

When to teach? (Economically Utilize Teaching Budget)

Failure Prognosis based Teaching heuristic (FTP)

MultiTask-DQN Structure

Teach when the dialogue is likely to fail:

$$Q^{\text{succ}}(s_t, a_t) < \alpha \frac{1}{w} \sum_{j=t-w}^{t-1} Q^{\text{succ}}(s_j, a_j)$$

Teaching Scheme = Teaching Heuristic + Teaching Strategy

When to teach? (Economically Utilize Teaching Budget)

TASK: ask for moderate chinese restaurant & request its phone number

	Dialogue Turn	Conf. Score	Q^turn	Q^succ	Teaching?
System	Hello, how may I help you?				
User	[Top ASR] I would like it to be moderate.	0.68	6.05	0.911	FALSE
System	Could you repeat it?				
User	[Top ASR] I would like it to be moderate.	0.81	5.35	0.879	FALSE
System	Could you repeat it?				
User	[Top ASR] Moderate.	0.57	3.31	0.681	TRUE
Teacher	Do you want a moderate restaurant?				
User	[Top ASR] Yes, a moderate chinese restaurant	0.95	3.19	0.914	FALSE
System	Seven Day is a nice chinese restaurant in the north part.				
User	[Top ASR] The phone number.	0.92	1.23	0.942	FALSE
System	1223314954				

How to evaluate the safety and the efficiency?

$$\textbf{Risk Index:} \ \mathtt{RI} = \int_{t=0}^{T} \mathtt{dis}(t) \delta_{\mathtt{risk}}(t) dt,$$

Hitting Time: $\mathrm{HT} = c $	$l_{ m ln}$	$\left(\frac{b}{a-a}\right)$	-
----------------------------------	-------------	------------------------------	---

	CA	EA	EAPC
Early	98.5	110.6	56.1
Rand	193.4	102.4	65.5
FPT	<u>154.4</u>	<u>86.2</u>	53.6
SIT	230.8	121.7	66.0
SUT	183.5	95.8	<u>44.5</u> *
SUT&FPT	131.6	<u>101.8</u>	<u>54.6</u>
NoTeaching		202.9	

	CA	EA	EAPC
Early	3390.9	3479.4	4354.7
Rand	3669.0	3518.5	2979.2
FPT	3089.4	<u>2921.1</u>	2798.4
SIT	3576.4	4339.7	3768.7
SUT	3230.4	2954.5	3300.2
SUT&FPT	<u>2890.7</u>	3393.0	<u>2702.2</u> *
NoTeaching	3204.1		

How to evaluate the safety and the efficiency?

$$\textbf{Risk Index:} \ \mathtt{RI} = \int_{t=0}^{T} \mathtt{dis}(t) \delta_{\mathtt{risk}}(t) dt,$$

Hitting Time: $\mathrm{HT} = c_{\sqrt{}}$	\int ln	(a	b - τ		
---	-----------	----	----------	--	--

	CA	EA	EAPC
Early	98.5	110.6	56.1
Rand	193.4	102.4	65.5
FPT	<u>154.4</u>	<u>86.2</u>	53.6
SIT	230.8	121.7	66.0
SUT	183.5	95.8	<u>44.5</u> *
SUT&FPT	131.6	<u>101.8</u>	<u>54.6</u>
NoTeaching		202.9	

	CA	EA	EAPC
Early	3390.9	3479.4	4354.7
Rand	3669.0	3518.5	2979.2
FPT	3089.4	<u>2921.1</u>	2798.4
SIT	3576.4	4339.7	3768.7
SUT	3230.4	2954.5	3300.2
SUT&FPT	<u>2890.7</u>	3393.0	<u>2702.2</u> *
NoTeaching		3204.1	

How to evaluate the safety and the efficiency?

$$\textbf{Risk Index:} \ \mathtt{RI} = \int_{t=0}^{T} \mathtt{dis}(t) \delta_{\mathtt{risk}}(t) dt,$$

Hitting Time: $\mathrm{HT} = c $	\ln	$\left(\frac{}{a}\right)$	$\frac{b}{-\tau}$	$\bigg)$	
----------------------------------	-------	---------------------------	-------------------	----------	--

	CA	EA	EAPC
Early	<u>98.5</u>	110.6	56.1
Rand	193.4	102.4	65.5
FPT	<u>154.4</u>	86.2	53.6
SIT	230.8	121.7	66.0
SUT	183.5	95.8	<u>44.5</u> *
SUT&FPT	131.6	<u>101.8</u>	<u>54.6</u>
NoTeaching	202.9		

	CA	EA	EAPC
Early	3390.9	3479.4	4354.7
Rand	3669.0	3518.5	2979.2
FPT	3089.4	<u>2921.1</u>	2798.4
SIT	3576.4	4339.7	3768.7
SUT	3230.4	2954.5	3300.2
SUT&FPT	<u>2890.7</u>	3393.0	<u>2702.2</u> *
NoTeaching	3204.1		

3. Replacing Human with Rule-Based Systems

Replace human with rule-based systems

Agent-Aware Dropout DQN for Safe and Efficient
On-line Dialogue Policy Learning
Lu Chen, Xiang Zhou, Cheng Chang, Runzhe Yang, Kai Yu. EMNLP 2017
http://www.aclweb.org/anthology/D/D17/D17-1260.pdf

Lu Chen Xiang Zhou Cheng Chang Runzhe Yang Prof. Kai Yu

Agent-Aware Dropout DQN

N stochastic forward passes

for
$$i = 1, N$$
 do
 $\mathbf{q}_i \leftarrow \mathsf{DropoutQNetwork}(\mathbf{b}_t)$
 $a_{ti} \leftarrow \arg\max_j q_{ij}$
 $\mathbf{p}[a_{ti}] \leftarrow \mathbf{p}[a_{ti}] + 1/N$
end for

 $c_t \leftarrow \max_j p_j \\ a_t^{stu} \leftarrow \arg\max_j p_j$

 C_t uncertainty

$$P_{tea}(\Delta C_e)$$
 where $\Delta C_e = \max(0, C_{th} - \overline{C}_e)$

$$\left\{ 2, 1, 3, 2, 4, 1, 2, 2, 3 \right\} \left\{ \begin{array}{l} a_t = 2 \\ c_t = \frac{4}{8} \end{array} \right.$$

$$\{b_t, b_t, b_t, b_t, b_t, b_t, b_t, b_t\}$$

Agent-Aware Dropout DQN

N stochastic forward passes

for
$$i = 1, N$$
 do
 $\mathbf{q}_i \leftarrow \mathsf{DropoutQNetwork}(\mathbf{b}_t)$
 $a_{ti} \leftarrow \arg\max_j q_{ij}$
 $\mathbf{p}[a_{ti}] \leftarrow \mathbf{p}[a_{ti}] + 1/N$

end for

$$c_t \leftarrow \max_j p_j \\ a_t^{stu} \leftarrow \arg\max_j p_j$$

 C_t uncertainty

$$\overline{C}_e = \frac{1}{W} \sum_{i=e-W}^{e-1} C_i$$

average uncertainty

Teach when uncertain

Surpass Rule Policy in Accuracy

Surpass Rule Policy in Accuracy

AAD-DQN with uncertainty based heuristic provides the safer learning process.

Surpass Rule Policy in Accuracy

AAD-DQN with uncertainty based heuristic provides the safer learning process.

Better policies are found by AAD-DQN:

New policy can offer the information (nn policy: offer_2) while the rule based policy needs to confirm. (rule: confirm_name / confirm_area)

User Simulator Real (Recruited)
User

Real User + Human Teacher Real User + Human Rules

Pros:

Low cost, easy to tune

Training env.

Cons: may be different with the real env.

User Simulator Real (Recruited)
User

Real User + Human Teacher Real User + Human Rules

Pros:

Low cost, easy to tune

Training env. is close to the real application scenario

Cons:

Training env.
may be different
with the real env.

Cold Start Problem

User Simulator Real (Recruited)
User

Real User + Human Teacher

(Companion Teaching)

Real User + Human Rules

Pros:

Low cost, easy to tune

Training env. is close to the real application scenario

Safety, efficiency

Cons:

Training env.
may be different
with the real env.

Cold Start Problem Expensive, teachers are not 24-7 available

User Simulator Real (Recruited)
User

Real User + Human Teacher Real User + Human Rules

(Companion Learning)

Pros:

Low cost, easy to tune

Training env. is close to the real application scenario

Safety, efficiency

Safety, efficiency, economic

Cons:

Training env. may be different with the real env.

Cold Start Problem Expensive, teachers are not 24-7 available

Cost of handcrafting rules

Thank you!