Hierarchical Neural Model for Recommending Articles

CS420 Coursework: Text Classification

Runzhe Yang Yang Runzhe@sjtu.edu.cn

ACM Honored Class, Shanghai Jiao Tong University

Challenge: how to build a Machine Learning Model assisting the human editor in selecting proper articles from a large amount of financial news?

- A Binary Text Classification Task!

Traditional models

bag of words, n-grams and some TFIDF variants

- acceptable performance. 🗸
- hand-crafted or rule-generated features of text. X
- restricted expression power and learnability. X

Deep learning models

word-based CNN [1, 3], word-based RNN and character-based CNN [2]

- learn more flexible features consistent to the task automatically. 🗸
- do not take the hierarchy of document into account. X

Only learns the features and the classification in from the "flat" document representation, which does not conform to to human reading behaviors.

Problem Formulation

Notation	Description
\mathcal{C}	The dictionary of Chinese characters, including all special symbols.
c_1, c_2, \dots, c_N	The stream of characters of documents as raw inputs.
$oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_N$	The corresponding embedded vectors of characters.
$oldsymbol{f}_{\delta}^{(k)}$	The feature in k^{th} channel gained by CNN kernel of width δ .
$oldsymbol{r}_1,oldsymbol{r}_2,\ldots,oldsymbol{r}_T$	The compact representation of the document of total length T .
$oldsymbol{p}$	The predicted probability $\mathbb{P}(\hat{y}=1 c_1,c_2,\ldots,c_N)$.

Input: the stream of Chinese characters, {c_i}_N, with fixed length N=1500.

Output: the probability p of acceptance of each document, i.e., $P_{\theta}(\hat{y} = 1 | c_1, c_2, ..., c_N)$ where θ are parameters of model.

Cross Entropy Criterion:

 $\mathcal{L}(\theta) = -y \log P_{\theta}(\hat{y} = 1 | c_1, c_2, \dots, c_N) - \alpha \cdot (1 - y) \log P_{\theta}(\hat{y} = 0 | c_1, c_2, \dots, c_N)$

bidirectionally

use outputs

at two ends

where $a \approx 0.1$ is for treating the imbalance issue.

concatenate all

My Solution:

Hierarchical Neural Model

Level 1: Chinese Character Embedding

$$oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_N= exttt{embedding}(c_1,c_2,\ldots,c_N)$$

Level 2: CNNs as Word Signal Extractors

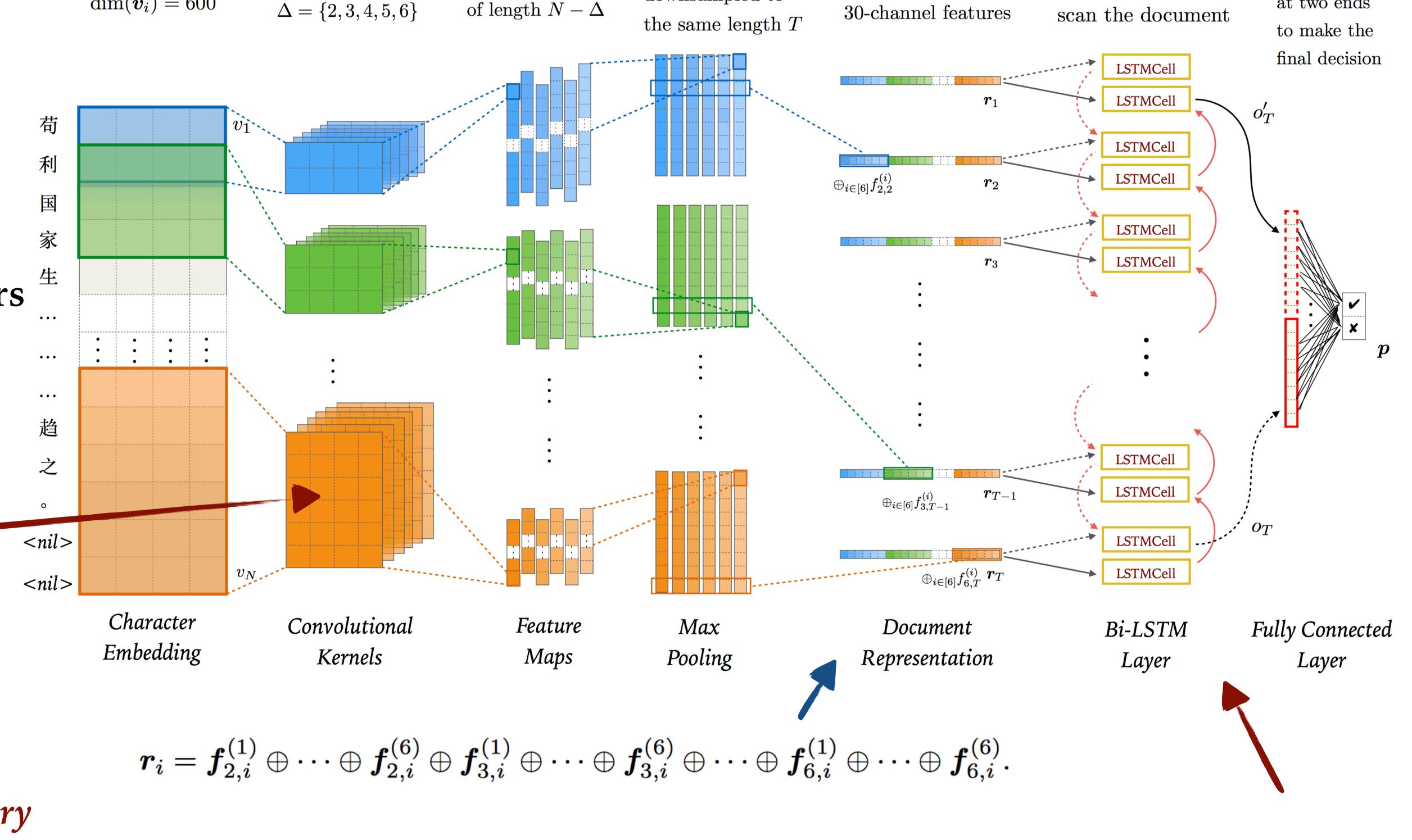
- use CNNs with various kernel size to extract the representation of words and phrases.

$$m{f}_{\delta}^{(k)} = \mathtt{CNN}_{\delta}^{(k)}(m{v}_1,m{v}_2,\ldots,m{v}_T)$$
 $\delta \in \Delta = \{2,3,4,5,6\}$

- get compact representation of document by concatenating all all 30 channels

Level 3: BiLSTM as Document Reader

- use Bi-directional Long Short Term Memory Networks since human do not simply read an article from beginning to the end, but bi-directionally search for desired information.



stride = 10

downsampled to

6-channel outputs

 $\ker = \Delta \times \dim(\boldsymbol{v}_i)$

 $\dim(\boldsymbol{v}_i) = 600$

$$\begin{cases} \boldsymbol{o}_T = \mathtt{LSTM}(\boldsymbol{r}_1, \boldsymbol{r}_2, \cdots, \boldsymbol{r}_T)_T \\ \boldsymbol{o}_T' = \mathtt{LSTM}'(\boldsymbol{r}_1, \boldsymbol{r}_2, \cdots, \boldsymbol{r}_T)_T \end{cases} \quad \boldsymbol{p} = \boldsymbol{W}_f(\boldsymbol{o}_T \oplus \boldsymbol{o}_T') + \boldsymbol{b}_f \quad p = \frac{exp\{\boldsymbol{p}_1\}}{exp\{\boldsymbol{p}_1\} + exp\{\boldsymbol{p}_2\}}$$

Experiments & Results

FastCNN	MultiCNN	CNN+LSTM	Large CNN+LSTM
0.868829	0.869773	0.853858	0.881556
Huge CNN+LSTM	Huge CNN+LSTM 2	Ex CNN+LSTM	Proposed HNM
0.893592	0.894015	0.898972	0.900659

Using a two layer neural network of hidden size 256 to stack all the 8 models in this table, I've achieved AUC 0.901014 on the validation set.

> Please find the model specification & training settings on https://github.com/RunzheYang/TextClassification

Conclusion:

My proposed Hierarchical Neural Model (HNM) outperforms all the other CNN+LSTM variants. More channels, higher embedding dimensions, and larger LSTM hidden size always benefits the results as our comparison shows. Stacking is an effective way to improve the final performance.