

COMPANION TEACHING

Towards Affordable On-line Dialogue Policy Learning

A Brief Self Introduction

About me:

Runzhe Yang (Chinese: 杨闰哲), 3rd-year undergrad at ACM Class

Research intern at SJTU Speech Lab mentored by Prof. Kai Yu on Spoken Dialogue Systems.

About my mentor:

Prof. Kai Yu (Chinese: 俞凯), Research Professor, Dept. of CSE, SJTU Co-founder & Chief Scientist of AISPEBCH

B.Eng & M.Sc from Tsinghua Univ. Ph.D. from MIL, **Cambridge**

Senior member of IEEE, Member of ISCA Member of IEEE Speech and Language Processing Technical Committee **1000 Overseas Talent Plan (Young Talent)**

About SpeechLab:

"To carry out speech-related research, you must be an excellent engineer; however, to become an outstanding engineer, you must be a good scientist."

About this paper:

European Chapter of the Association for Computational Linguistics

Valencia, 3-7 April 2017

EACL 2017

- Currently once every three years
- Short papers: 120/504 (24% acceptance rate)
 - Compare to 46/199 in 2014

COMPANION TEACHING

Towards Affordable On-line Dialogue Policy Learning

On-line Dialogue Policy Learning?

Example of Successful Dialogue

TASK: ask for <i>italian</i> restaurant in <i>north</i> area & request its <i>phone number</i>						
		Dialogue Turn	Score	Q^{turn}	Q^{succ}	FP
[1]	System	[SLU] welcomemsg()				
	User	[Top ASR] Italian food in the north part of town.	0.30	-4.54	27.44	False
[2]	System	[SLU] expl-conf(food="italian")				
	User	[Top ASR] Yes.	0.99	-2.24	29.09	False
[3]	System	[SLU] offer(name="caffe uno") inform(food="italian") inform(area="north")				
	User	[Top ASR] The phone number.	0.92	-2.00	28.27	False
[4]	System	[SLU] offer(name="caffe uno") inform(food="italian") inform(area="north") Inform(phone="01223314954")				
	User	[Top ASR] Does it serve danish italian food.	0.53	-2.41	28.20	False
[5]	System	[SLU] offer(name="caffe uno") inform(food="italian") inform(area="north")				
	User	[Top ASR] Goodbye.	0.58	0.05	27.42	False

- rule-based methods
 - hand-craft rules, "safe" but not "flexible"

- rule-based methods
 - hand-craft rules, "safe" but not "flexible"
- data-driven methods
 - learn from data / interactions!

- data-driven methods
 - learn from data / interactions!

- data-driven methods
 - learn from data / interactions!
 - Partially Observable Markov Decision Process (POMDP)

- data-driven methods
 - learn from data / interactions!
 - Partially Observable Markov Decision Process (POMDP)
 - <S, A, T, R, Ω, Ο, γ>

- data-driven methods
 - learn from data / interactions!
 - Partially Observable Markov Decision Process (POMDP)
 - <S, A, T, R, Ω, Ο, γ>
 - Reinforcement Learning: $\pi(a|o)$ maximize total reward

http://www.cstr.ed.ac.uk/downloads/publications/2009/cuayahuitl-csl09.pdf

- Where can we get data / interactions ?

- Where can we get data / interactions ?
- task oriented dialogue data is rare...

- Where can we get data / interactions ?
- task oriented dialogue data is rare...
- train the system with "user simulators"

- Where can we get data / interactions ?
- task oriented dialogue data is rare...
- train the system with "user simulators"
 - or paid testers

- Where can we get data / interactions ?
- task oriented dialogue data is rare...
- train the system with "user simulators"
 - or paid testers
- Reality: non-cooperative!

- Where can we get data / interactions ?
- task oriented dialogue data is rare...
- train the system with "user simulators"
 - or paid testers
- Reality: non-cooperative!
- Not evolvable!

- Where can we get data / interactions ?
- task oriented dialogue data is rare...
- train the system with "user simulators"
 - or paid testers
- Reality: non-cooperative!
- Not evolvable!
- Must be on-line!

How to Build Evolvable Conversational Agent in Real World Scenarios?

How to Build Evolvable Conversational Agent in Real World Scenarios?

How to Build Evolvable Conversational Agent in Real World Scenarios?

Possible Solutions to break the vicious cycle

Unsafe Policy Behavior (Solvable) \checkmark

Individual Rationality (Unsolvable) 🗶

Inefficient Learning Process (Solvable) 🗸

Unsafe Policy Behavior (Solvable) \checkmark

Inefficient Learning Process (Solvable) 🗸

Efficiency reflects how long it takes for the on-line policy learning algorithm to reach a satisfactory performance level.

Unsafe Policy Behavior (Solvable) \checkmark

Inefficient Learning Process (Solvable) 🗸

Efficiency reflects how long it takes for the on-line policy learning algorithm to reach a satisfactory performance level.

Unsafe Policy Behavior (Solvable) \checkmark

Safety* reflects whether the initial policy can satisfy the quality-of-service requirement in real-world scenarios during on-line policy learning period.

Inefficient Learning Process (Solvable) 🗸

Unsafe Policy Behavior (Solvable) \checkmark

- * Most previous studies of on-line policy learning have been focused on the *efficiency* issue, such as
 - Gaussian process reinforcement learning (GPRL)(Gasic et al., 2010),
 - Deep reinforcement learning (DRL) (Fatemi et al., 2016; Williams and Zweig, 2016; Su et al., 2016), etc.

Inefficient Learning Process (Solvable) 🗸

Unsafe Policy Behavior (Solvable) \checkmark

- * However, *safety* is a prerequisite for the efficiency to be achieved.
 - **Reason**: an unsafe on-line learned policy can consequently fail to attract sufficient real users to continuously improve the policy, no matter how efficient the algorithm is.
 - Urgency: on the *safety* issue which little work has been done.

Our Solution: Human-in-the-loop

Our Solution: Human-in-the-loop

In this work, we propose a **human-machine hybrid RL framework**, *Companion Teaching*, which includes a human teacher in the on-line dialogue policy training loop. The involved human teacher accompanies the machine and provides **immediate hands-on guidance at turn level** during on-line policy learning period. This will lead to a *safer* policy learning process since the learning is done before any possible dialogue failure at the end.

Our Solution: Human-in-the-loop

In this work, we propose a **human-machine hybrid RL framework**, *Companion Teaching*, which includes a human teacher in the on-line dialogue policy training loop. The involved human teacher accompanies the machine and provides **immediate hands-on guidance at turn level** during on-line policy learning period. This will lead to a *safer* policy learning process since the learning is done before any possible dialogue failure at the end.

RL-Based Framework

Companion Teaching Framework

Teaching Strategies

Teaching via Critic Advice (CA) corresponds to the **right switch (position 3)** in Figure 1. The key idea is to give the policy model an *extra immediate reward signal* from teacher, which differentiates between good actions and bad actions.

Teaching Strategies

Teaching via Example Action (EA) corresponds to the **left switch (position 2)**. The human teacher *directly gives an example action* at a particular state. The system can learn from teacher's action by considering the action as its own exploration action.

Teaching Strategies

Teaching via Example Action with Predicted Critique (EAPC) take advantages of both EA and CA. The human teacher *gives an example action* and meanwhile, an *extra reward* will be given to the policy model as well. And this extra reward signal lasts even in teacher's absence. The example actions will be collected to train a *weak action prediction model*.

- *Dataset*: Dialogue State Tracking Challenge 2 (DSTC2) dataset

- *Dataset:* Dialogue State Tracking Challenge 2 (DSTC2) dataset
- *DST*: a Rule-based Tracker (Sun et al., 2014)

- Dataset: Dialogue State Tracking Challenge 2 (DSTC2) dataset
- *DST*: a Rule-based Tracker (Sun et al., 2014)
- *Policy Model*: a Deep Q-Network (DQN) (Mnih et al., 2015)
 - Two hidden layers to map a belief state s_t to the values of the possible actions a_t at that state, $Q(s_t, a_t; \theta)$.
 - a target network with weight vector θ^- is used.

- Dataset: Dialogue State Tracking Challenge 2 (DSTC2) dataset
- *DST*: a Rule-based Tracker (Sun et al., 2014)
- *Policy Model*: a Deep Q-Network (DQN) (Mnih et al., 2015)
 - Two hidden layers to map a belief state s_t to the values of the possible actions a_t at that state, $Q(s_t, a_t; \theta)$.
 - a target network with weight vector θ^- is used.
- Reward Design: consisting of three parts
 - Length penalty: -1 at each turn;
 - Success bonus: +30 at the end of the session;
 - Extra reward: $1 \le c_t \le 20$.

User Simulator: an agenda-based user simulator (Schatzmann et al., 2007)

- User Simulator: an agenda-based user simulator (Schatzmann et al., 2007)
- *Simulated Teacher:* a well-trained policy model with success rate 0.78 in our experiment.

- User Simulator: an agenda-based user simulator (Schatzmann et al., 2007)
- *Simulated Teacher:* a well-trained policy model with success rate 0.78 in our experiment.
- Teaching Budget: 1500 turns

- User Simulator: an agenda-based user simulator (Schatzmann et al., 2007)
- *Simulated Teacher:* a well-trained policy model with success rate 0.78 in our experiment.
- Teaching Budget: 1500 turns

Evaluating Safety: The moving success rate-#dialogue curve in training in which the real performance experienced by users.

- User Simulator: an agenda-based user simulator (Schatzmann et al., 2007)
- *Simulated Teacher:* a well-trained policy model with success rate 0.78 in our experiment.
- Teaching Budget: 1500 turns

Evaluating Safety: The moving success rate-#dialogue curve in training in which the real performance experienced by users.

Evaluating efficiency: It can be evaluated by the number

of dialogues required to achieve a reasonable performance in the testing curve.

Figure 2: The training curves of moving average success rate.

Figure 3: The testing curves of moving average success rate.

- Timing: when to teach?

- Timing: when to teach?
- Quantitive evaluation
 - Hitting time & Risk index

- Timing: when to teach?
- Quantitive evaluation
 - Hitting time & Risk index
- Rule-based system as guidance

- Timing: when to teach?
- Quantitive evaluation
 - Hitting time & Risk index
- Rule-based system as guidance
- Experiments in the real conversational environment

Thanks!