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Intro - Motivating Scenarios

scalar reward, e.q.

o max(min{speed, safety, ...})

Autonomous driving as an optimization problem



Intro - Motivating Scenarios
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Who lives and who dies?
The autonomous car must decide between
option 1: killing one pedestrian
option 2: killing its own passengers



Intro - Motivating Scenarios
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Think about how we learned to swim.
Many Objectives — speed, stability, endurance,
energy efficiency, the beauty of style...
Our coaches never teach us
relative importance weights for them.

But we swim well.



Intro - Research Questions
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Multiple
Competing Human
Objectives Preferences

Can we design an efficient learning algorithm,
which learns all potentially optimal policies, and adapts
optimally to any real-time specified preference?



Intro - Contributions & Outlines

o. Background 1. Theory contributions

- Reinforcement Learning - Theoretical Framework for Value-Based RL

- Two Value-Based Deep MORL Algorithms

- Naive Version: A simple extension
- Envelope Version

- Problem Formulation
- MO-MDPs
- Optimality Concepts
- Delayed Linear Preference Scenarios

2. Evaluation contributions 3. Application contributions

- Quantitive Evaluation Metrics
- Coverage Ratio

- Adaptation Quality

- Task-Oriented Dialogue Systems
- RL-Based Dialogue Policy Learning

- Objectives: Brevity v.s. Success

- Synthetic Environments - User Adaptive Policies



Background - Reinforcement Learning

Playing Chess



Background - Reinforcement Learning

Markov Decision Process (MDP) Playing Chess



Background - Reinforcement Learning

N

~
/

<S7 A? 7)7 T? f}/>

State Space

Playing Chess
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Playing Chess



Background - Reinforcement Learning
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(S, A,P,r,v)

State Space Action Space

Stochastic 77(8/‘8, a)
Transition Kernel e.q. P(S,|S1,a0) = 0.7 Playing Chess



Background - Reinforcement Learning
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Transition Kernel e.q. P(S,|S1,a0) = 0.7 Playing Chess

r:SxA—-R
€.g. T(Sl,ao) = 3.5
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(S, AP, r,7)

State Space Action Space

Win - Lose



Background - Reinforcement Learning
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Transition Kernel e.q. P(S,|S1,a0) = 0.7 Playing Chess

r:SxA—-R
€.g. T(Sl,ao) = 3.5
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(S, AP, r,7)

State Space Action Space

Win - Lose

v € 0,1) is a discount factor



Background - Reinforcement Learning

<87 Aa 7)7 r, /7>

State Space Action Space

Stochastic 77(8/‘8, a)
Transition Kernel e.q. P(S,|S1,a0) = 0.7

r:SxA—-R
€.g. T(Sl,ao) = 3.5

v € 0,1) is a discount factor
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Playing Chess

Stationary policy: 7'('(&‘8) is a
function that maps each state to a
probability distribution over the
action space.



Background - Reinforcement Learning
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Playing Chess

©.)
Total Reward: 7'+ := thr(st, ag) Stationary policy: 7(a|s) is a
t=0 function that maps each state to a
probability distribution over the

T = {(5t7 Clt)}fio | action space.

if the agent executes a trajectory



Background - Reinforcement Learning
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Playing Chess

Goal: find optimal 7T such that

VW(S) ‘= ETN(P,WHSOZS [fT]

is maximized.



Background - Reinforcement Learning
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Goal: find optimal 7T such that

VW(S) ‘= ETN(P,WHSOZS [727']

is maximized.

Value Function



Background - Reinforcement Learning

N
N

.

+OO@H

()
\/

Playing Chess

Goal: find optimal 77 such that / unknown: model-free

VW(S) ‘= ETN(P,WHSOZS [7/;’7']

is maximized.



Background - Reinforcement Learning

Goal: find optimal 7T such that

VW(S) — ETN(P,WHSO:S [727']

is maximized.

How? - (1) Evaluation & (2) Control



Background - Reinforcement Learning

How? - (1) Evaluation & (2) Control

(™) ) o] =5 | ~
N V EW Ve (S ) = EW V@ lo o - Ve (80)
~ 1 T) X Volr, 0 0 g
7o) = i,
i=1 0 0+n

Policy-Based Methods: Large Variance, On-Policy

|



Background - Reinforcement Learning

How? - (1) Evaluation & (2) Control
© ey ) )
3 1 N x VolEr, {VWQ(SO)} = Er, [Ve log g - VM(SO)}
V™ (s0) = sz”, {
i=1 0 0+n
Policy-Based Methods: Large Variance, On-Policy

A

QW(Sa CL) c = ETN(P,WMSOZS,CLOZCL [TT]

(1)
Q™ (s,a) =r(s,a) + vYEp Q™ (s',a’) Bellman Expectation Equation

(2> * * / /
Bellman Optimality Equation & (s,a) =7(s,a) +vEp I{laXQ (s',a")

a’'eA

Value-Based Methods



Background - Reinforcement Learning

How? - (1) Evaluation & (2) Control

Value-Based Methods

(1)
Q™ (s,a) =r(s,a) + YEp Q™ (s',a’) Bellman Expectation Equation

(2)

Bellman Optimality Equation Q" (s,a) =r(s,a) +vEp g}?ﬁ Q*(3/> a’)

Loss Functions: Ly(8) =E,, {(yk — Q(S,a;H))Q}

Vi
00000
00000

O 00000
OO 000D

yp = Eg [r(s, a) + Y max Q(s',a; Hk)]

-Network



Background - Problem Formulation

r:SxA—~R
e.q. r(S1,a9) = 3.5

The scalarized reward function design
is often infeasible in practice.

e.g. Empirical hypothesis may be wronag.

(S, AP, r,v)

State Space Action Space

Stochastic 73(8/‘8, a)
Transition Kernel e.g. P(S,|S:,a0) = 0.7

r:SxA—=R
c.g. T(Sl,ao) = 3.5

v € |0,1) is a discount factor



Background - Problem Formulation

r:SxA—~R
e.qg. r(S1,a9) = 3.5

The scalarized reward function design
is often infeasible in practice.

e.g. Multi-attribute reward function.
<S7 Av Pv ’T’, 7>

State Space
Speed X Efficiency

Stochastic 73(8/‘8, a)

.!.’J X Stability Transition Kernel e.g. P(S,|S:,a0) = 0.7
SN )
,‘”f X Wear and tear on muscles r:SxA—=R

H R ? c.g. T(Sl,ao) =3.5

v € |0,1) is a discount factor



Background - Problem Formulation
Multi-Objective Markov Decision Processes(MOMDPs):

Use Vectorial Rewards to encode many possibly competing objectives.

e.g. T = [Speed,Efﬁciency, Stability, Wear and Tear]T

'\

e.g. Multi-attribute reward function.
(S, AP, r,7)

State Space
Speed X Efficiency

g ) Stochastic P(S/‘S, CL)
'.;g X Stability Transition Kernel e.g. P(Sy|S, ao) = 0.7
3 & X Wear and tear on muscles Reward 1 S x A —s R™

S R ? Function eg.r(s,a) =[0.1 2.0]"

v € |0,1) is a discount factor



Background - Problem Formulation
Multi-Objective Markov Decision Processes(MOMDPs):

Use Vectorial Rewards to encode many possibly competing objectives.

e.g. T = [Speed,Eﬂiciency, Stability, Wear and Tear]T

'\

Goal: find all optimal 7T's such that <87 .A, 7)7 r, ’7>

State Space

V7(s) :==Erpm [Pr] Stochastic ~ P(s'|s, a)

Transition Kernel e.g. P(S,|S:,a0) = 0.7

Reward [P:S X A—+ R™
Function eg.r(s,a)=[0.12.0]7

‘= ETN(P,W) Z /ytr(sta a't)
| t=0 |

are maximized optimal ?
v € |0,1) is a discount factor



Background - Problem Formulation
Optimality Concepts

1. Policy dominance:

7 -1 Vie [m], Vi (so) > Vi (s0)
o
NN
NN

Multiple
Competing
Objectives



Background - Problem Formulation
Optimality Concepts

1. Policy dominance:

7 -1 Vie [m], Vi (so) > Vi (s0)
o
NN
NN

2. Pareto optimal policies:

Multiple T = {r | #n’ € I, 7’ == 7}
Competing
Objectives



Background - Problem Formulation
Optimality Concepts

1. Policy dominance:

7 -1 Vie [m], Vi (so) > Vi (s0)
o
NN
NN

2. Pareto optimal policies:

Multiple M* = {r | #x’ eI, = x}
Competing | | |
Objectives 3. Pareto (optimal solutions) frontier:

F*:={V™(sg) | m€eIl"} or
Fr=Ar |7~ (P,nm),mell"}



QUANTITY OF OBJECTIVE 2

Background - Problem Formulation
Optimality Concepts

‘ ‘ Pareto Frontier

‘ Convex Coverage Set

Non-optimal Solutions

QUANTITY OF OBJECTIVE 1



Background - Problem Formulation
Optimality Concepts

A preference function f :R™ —- R

* maps the value or reward consisting of quantity
o of m objectives in to one real scalar. Given value
2 function V™(s) or discounted total rewards 7,
ﬂ we name the real value f o V™ (s) or f(7,) the
policy's utility under preference f.

Human
Preferences



Background - Problem Formulation
Optimality Concepts

A preference function f :R™ —- R

* maps the value or reward consisting of quantity
o of m objectives in to one real scalar. Given value
2 function V™(s) or discounted total rewards 7,
ﬂ we name the real value f o V™ (s) or f(7,) the
policy's utility under preference f.

Human

Preferences Linear preference: fw (T) =w'r

/

Relative Importance Weights



QUANTITY OF OBJECTIVE 2

Background - Problem Formulation
Optimality Concepts

wirp > wlrp

QUANTITY OF OBJECTIVE 1

Q Preferred Solution
G Non-preferred Solution

/ Preference w € ()

Utility Projection



Background - Problem Formulation

Delayed Linear Preference Scenarios

Learning Phase:

Unknown Linear Preference / Abundant Resources / Learn all policies.

rell,=>Fwe st Vo ell,wTv™(so) > w o™ (so)

Analysis Phase:

User can analyze the trade-off between multiple objectives.

Execution Phase:

A specific linear preference function w will be given
Required to respond with an optimal policy 77, from II,. to the given
preference, using limited computational resources.



Background - Problem Formulation

Delayed Linear Preference Scenarios

. speed .
Attributes Pref. : : Attributes Preference Attributes Preference
H speed 22?7 ‘ E -4 speed 0.7 aumm awit speed 0.4 o
stability ??? E E ’ﬁ stability o.2 e stability 0.7
ici ; . . ; ici efficiency 0.2 @
efficiency ??? P stability efficiency ! efficiency 0.1 o y o
Learnlng_ Pl?ase : AnaIyS|s_ Ph_ase : Execution Phase Execution Phase
(equestrianism) ; (equestrianism) ; (race) (vaulting)
() '
Attributes Pref. *é ® ® : ‘ Attributes Preference @ Attributes Preference
a8 2 ® i 48 48
success  ??? g [ E SUCCess 0.7 amm» success 0.5 e
brevity — ??? " > brevity 03 @ brevity 0.5 e

: dialogue brevity .
Learning Phase : Analysis Phase : Execution Phase Execution Phase
(chatbot) (chatbot) (weather) (driving)



Theory - Framework for Value-Based RL

Please refer to my blog: https://runzhe-yang.science

Definition 1. (Metric Space) A metric space is an ordered pair (X, d) consists of an under-
lying set X and a real-valued function d(x, y), called metric, defined for x, y € X such that
for any x, y, z € X the following conditions are satisfied:

L dix,y) 20 [non-negativity]

2. dx,y) =0 x=y [identity of indiscernibles]

3. dx,y) =d(y,x) [symmetry] .
4. d(x,y) < d(x,z) + d(z,y) [triangle inequality] — —

All these four conditions are in harmony with our intuition of distance. Indeed, the Eu-
clidean distance d(x,y) = 1/(x1 — y1)*> + (x2 — y2)* + (x3 — y3)? is a valid metric.



https://runzhe-yang.science

Theory - Framework for Value-Based RL

Definition 2.(Contraction) Let (X, d) be a metric space and f : X — X. We say that f is a
contraction, or a contraction mapping, if there is a real number k£ € [0, 1), such that

d(f(x),f(y)) < kd(x,y)

for all x and y in X, where the term £ is called a Lipschitz coefficent for f.

n

Theorem 1. (Contraction Mapping Theorem) Let (X, d) be a complete metric space and

letf : X — X be a contraction. Then there is one and only one fixed point x* such that

fGT) =x".

Moreover, if x is any point in X and f"(x) is inductively defined by f 2(x) = f(f(x)),
2 = fF2X), ..., f"(x) = fF"1(x)), then f*(x) — x* asn — .



Theory - Framework for Value-Based RL

v = (g, s,) Vg, Iterations v = (vs;,0s,)
<+—y——0
f Y

U*. / U*. ‘

Vo ket Tv Vs pt(s2)+1
V¥ v*
/ .
| |vo 170 Vg, Iteration
0
Ve >

Topological interpretation of the asynchronous value iteration.

Single-objective Reinforcement Learning algorithms:

1) Value Space: all the bounded functions in Q = RSx4

2) Value Metric: d(Q, Q") =sup|Q(s,a) — Q'(s,a)

3) Optimality Operator: (7Q)(s,a) :=r(s,a) + YEyp(|s.a) sup Q(s',a’)

a’'e A
'\ IS @ contraction Optimalitv Filter
with the fixed-point Q* P R

4) Updating Scheme: asynchronous value iteration



Theory - Deep MORL Algorithms

AN AN
a o .-ﬂfQ'fﬁ-:L:',-;"Q:;-~7,“'0 P Q6 aw)
S QRN D Qs az,w)
Q% t:;'-:‘:;ofz:f:;@;:f:ffo;}:;i;ﬁ{fr- SOr0 - Q(s, as,w)
SR O ‘x':"'. .“\",l. "-":‘-J?\"»,O_~'."'"

W Q.- VHOEE O N0 Q(s, ag,w)
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o 8

O

Utility-Based Multi-Objective Q-Network

(Naive Version)

Multi-Objective Reinforcement Learning (MORL) algorithm:

1) Value Space: all the bounded functions in  Q = (Q — R)>*4 0.d
2) Value Metric: d(Q, Q") = supsup |Q(s,a,w) — Q'(s, a,w) is still complete.

s,a W

3) Optimality Operator: (7Q)(s,a,w) :=w'r(s,a) + VEswp(|s.0) (HQ) (s, w).

/‘ is @ contraction Optimality Filter
with the fixed-point Q" (HQ)(s,w) :=sup Q(s,a’,w)

a

4) Updating Scheme: Hindsight Experience Reply (HER) [OpenAl, NIPS2017]



Theory - Deep MORL Algorithms

Problem 1: predictions are not informative;

o ‘ Optimal Solutions

. Pseudo Solutions
Non-Optimal Solutions

/ Preference w < ()

\ Utility Control Frontier

QUANTITY OF OBJECTIVE 2

QUANTITY OF OBJECTIVE 1

Several predicted utilities are not enough to recover the Pareto
optimal solutions, unless we have known the whole utility frontier.



Theory - Deep MORL Algorithms

Problem 2: sample inefficiency.

b.

A Snapshot of
Deep MORL Algorithm

Optimal Solutions

/

Sampled Preferences

QUANTITY OF OBJECTIVE 2

QUANTITY OF OBJECTIVE 1

At some stage, the naive algorithm finds the optimal solutions
while they are not aligned with preferences. It still requires many
iterations for the value-preference alignment.



Theory - Deep MORL Algorithms

/AN AN
o JoiE QiR O O Qs,a1,w)
S o gioiionl o Qb
Ol oo i L0 Qls,as,)
W O OO N0 Q(s, as, w)
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Multi-Objective Q-Network
(Envelope Version)

Multi-Objective Reinforcement Learning (MORL) algorithm:

1) Value Space: all the bounded functionsin Q = (2 — R™)SXA

‘/Pseudo—metric
2) Value Metric: d(QaQ,) ‘= Sup \wT(Q(s,a,w) — Q/(S,CL,W))‘

s€S,acA
we)
3) Optimality Operator: (TQ)(s,a,w) :=1(s,a) + VEyp(.s,0)(HQ) (s, w)
%l o
is a generalized contraction Optimality Filter
with the fixed-point class [Q"] (HQ)(s,w) := argg sup w'Q(s,a’,w’)

a’ w’

4) Updating Scheme: hindsight experience reply + homotopy method



Theory - Deep MORL Algorithms

(Envelope Version)

Multi-Objective Reinforcement Learning algorithms:

e R-Ra
o ZoiE QiR O O Q(s,a1,w)
O g oo i o Qls.0sw)
W O OO 0 Qs as, w)
O d Oijfjio b O Q(s,as5,w)
o Y

4) Updating Scheme: hindsight experience reply + homotopy method

Lﬁ(é’) = s, a,w lyr — Q(s,a,w; 9)“3] L2(9> — Es,a,w“wTyk — wTQ(Sv a, W; ‘9)|]
yr = Eg [r(s,a) +7(HQ) (5", a',w; O)]

Homotopy loss functions: Lx(0) = (1 — Ag) - Ly (0) + Mg - LE(9)



Theory - Deep MORL Algorithms

(Envelope Version)

Multi-Objective Reinforcement Learning algorithms:

Landscape of L*(0)

Many local Minima,
Hard for optimization.
(A =0.0)

. Homotopy Path

~

N
=~ =A Aincreases
from 0.0 to 1.0

Landscape of

(1= X)-LA0) + \- LB(6) =

|

: . : -— Few local Minima,
Trade-off between _— : EE T VO T}(zo_flat to be optimized.
the loss A and the loss B | ¢ ' (A=1.0)

Local 9*
Minimum

Landscape of L°(0)

The homotopy path connecting two loss functions provides better
opportunities to find the global optimal parameters.



Evaluation - Metrics

(1) An agent's ability to find all the potential optimal solutions in the convex
coverage set of Pareto frontier.

00 «

Al
L
E . ‘ Retrieved Solutions
O
|
0 ‘ Non-optimal Solutions
o
LL
O
e g o
= Precision =
p o-0
)
C Recall = .
®-0

QUANTITY OF OBJECTIVE 1

precision-recall

Coverage Ratio: CRy (F) = 2- —
precision + recall



Evaluation - Metrics

(1) An agent's ability to find all the potential optimal solutions in the convex
coverage set of Pareto frontier.

(2) An agent's ability to adapt its policy to real-time specified preferences in
the execution phase.

b.

~

Optimal Control Frontier

N,

Retrieved Control Frontier

QUANTITY OF OBJECTIVE 2

Control Errors

QUANTITY OF OBJECTIVE 1

1
Adaptation Quality: AQ(C) = o
Q- errp



Evaluation - Synthetic Environments

Why Synthetic Environments?



QUANTITY OF OBJECTIVE 2

Evaluation - Synthetic Environments

Why Synthetic Environments?

The Access to Ground Truth for Evaluation!

b.
A
00 = A
Al
Ll . .
. ‘ Retrieved Solutions E Optimal Control Frontier
O
w
‘ Non-optimal Solutions A i'
@)
6 Retrieved Control Frontier
Precision = . E
= = = [
o-0 =
< W2
o 3
Recall = —— Control Errors
e-0

v

QUANTITY OF OBJECTIVE 1 QUANTITY OF OBJECTIVE 1



Evaluation - Synthetic Environments

/ \
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37 38 36 35 38 33 35 32 54 35 ,4 33 ,4 35 36 36 5 33 34 36 54 34 L4 33 32 32 31 33 31 3. 33 3 31 34

N1 N l’lllllllllllllllllllllllllllllllllllllllllllllllll-lllll

Best Utility: maxXa coes WT T’ =@- States = {(row, col)} /. \{ Actions = {L, R}

4.92392\ Protein
O Ptl ma | Pol |Cy 4.74425 | Carbs

?\ T Nutritions € RS, cq. r=|2302|Fts
4.67811 Water

Fruit Tree Navigation (FTN): An agent travels from the root node to one of the leaf
node to pick a fruit according to a post-assigned preference w on the components of
nutrition, treated as different objectives. The observation of an agent is its current
coordinates (row, col), and its valid actions are moving to the left or the right child node.



# Samples
1

16
32
64

128

Coverage Ratio
Recall (execution)

Naive

0.4562+0.058

0.6254+0.097

0.753+£0.101

0.8188+0.096

0.85+0.061

0.8968+0.036

0.8626+0.042

Envelope

0.8626+0.084

0.972+0.007

0.9624+0.014

0.9904+0.009

0.975+£0.041

0.9812+0.013

0.9906+0.021

Coverage Ratio
F1 (execution)

Naive

0.625+0.057

0.7654+0.077

0.856+0.067

0.8976+0.062

0.914+0.044

0.9452+0.02

0.9258+0.024

Envelope

0.924+0.051

0.9856+0.004

0.9808+0.007

0.9952+0.004

0.987+0.021

0.9904+0.007

0.9952+0.011

Evaluation - Synthetic Environments

Adaptation Quality
(execution)

Naive

0.7037+0.012

0.7701£0.026

0.8205+0.023

0.8255+0.044

0.8597+0.035

0.877+0.031

0.8705+0.03

Envelope

0.759+0.066

0.9101+£0.006

0.9261+0.015

0.9306+0.007

0.9402£0.0M

0.9506+0.001

0.9536+0.002

Sample Efficiency - Coverage Ratio (CR) & Adaptation Quality (AQ) comparison

of two deep MORL algorithms tested on fruit tree navigation task,

where the tree depth d=6. Trained on 5000 episode.
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where the tree depth d=6. Trained on 5000 episode.



Evaluation - Synthetic Environments

Adaptation Quality
(execution)

Coverage Ratio
Recall (execution)

Coverage Ratio
F1 (execution)

# Samples
1

Naive

0.4562+0.058

Envelope

0.8626+0.084

Naive

0.625+0.057

Envelope

0.924+0.051

Naive

0.7037+0.012

Envelope

0.759+0.066

4 0.6254+0.097 0.972+0.007 0.7654+0.077 0.9856+0.004 0.7701£0.026 0.9101+0.006
Previoyus Problem 2

8 0.753+0.101 0.9624+0.014 0.856+0.067 0.9808+0.007 0.8205+0.023 0.9261+0.015

16 0.8188+0.096 0.9904+0.009 0.8976+0.062 0.9952+0.004 0.8255+0.044 0.9306+0.007

32 0.85+0.061 0.975+0.041 0.914+0.044 0.987+0.021 0.8597+0.035 0.9402+0.011

64 0.8968+0.036 0.9812+0.013 0.9452+0.02 0.9904.+0.007 0.877+0.031 0.9506+0.001

128 0.8626+0.042 0.9906+0.021 0.9258+0.024 0.9952+0.0M1 0.8705+0.03 0.9536+0.002

Sample Efficiency - Coverage Ratio (CR) & Adaptation Quality (AQ) comparison

of two deep MORL algorithms tested on fruit tree navigation task,

where the tree depth d=6. Trained on 5000 episode.



Evaluation - Synthetic Environments
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Minerals

Comparison of CCS and control frontiers of deep MORL algorithms. Both figures are
measured on a fruit tree navigation task of the depth 6 containing total 64 solutions.
The figure (a.) visualizes the real CCS and retrieved CCS of naive and envelope MORL

algorithms using t-SNE. The figure (b.) presents the slices of optimal control frontier and

the control frontier of two MORL algorithms along the Mineral-Waters plane.
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Application - Task-Oriented Dialogue Systems

Dialogue Manager

INPUT Dialogue State . Reward Function
E— — . .
‘ (ASR / SLU) Tracking (DST) _': R(s¢, at) E
1 !
------- ; - wm wm owm wm wm wmwmwmwml
<= 1575
Tt
OUTPUT Policy Model |*
| NLG/TTS) (parameters 6) ay |

The RL-Based framework of task-oriented dialogue systems.

Reward Function:
re = 0.5 - 7" 4 0.5 - puce

Objective1- Dialogue brevity: users prefer shorter dialogue.

Objective 2 - Dialogue success: users get correct responses.
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Dialogue Manager

INPUT Dialogue State Reward Function {
— —_— . ' 1
‘ (ASR / SLU) Tracking (DST) : R(s¢, ay) )
‘ OUTPUT Policy Model
(NLG/TTS) (parameters 6) at !

® ® ! ‘ Attributes Preference @ Attributes Preference

Attributes  Pref.
- . g - -
success  ?7?7? o E success 0.7 em» success 0.5 am
i 2?7 . > : ' brevity 0.5 a»

brevity  ??: dialogue brevity : brevity 03 @ y 5

Learning Phase 5 Analysis Phase 5 Execution Phase Execution Phase
(chatbot) (chatbot) (weather) (driving)

success rate

Reward Function:

turn succ| T
Objective1- Dialogue brevity: users prefer shorter dialogue.

Objective 2 - Dialogue success: users get correct responses.
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Dialogue Manager

ug [ . o
INPUT : Dialogue State : Reward Function
_> _l" . : 1
‘ (ASR / SLU) o | Tracking (DST) | : [": R(s¢, at)
§ | 5
s 1875 5
5 T
OUTPUT | Policy Model |
(NLG /TTS) : (parameters 6) : at !

Attributes Pref. 6 ® P ‘ Attributes Preference @ Attributes Preference
- s| %o g - -
success  ??? Y ® : success 0.7 amm» success 0.5 am
i 277 wo - -~ : i revity 0.5 e
brevity 2?: : dialogue brevity : brevity 03 @ b y 5
Learning Phase : Analysis Phase : Execution Phase Execution Phase
(chatbot) (chatbot) (weather) (driving)

Reward Function: _
Delayed Linear

r, = [rfurn ,r?ucc} U Preference Scenarios
Objective1- Dialogue brevity: users prefer shorter dialogue.

Objective 2 - Dialogue success: users get correct responses.
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Experimental Settings:

“w.] PyDial Agenda-base user simulator with an error model
‘ error rate = 15%
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w1 PyDial Agenda-base user simulator with an error model
‘ error rate = 15%

The turn reward = -1 for each turn, and the success reward = 20.
The maximal length of dialogue is 25.
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Experimental Settings:

w1 PyDial Agenda-base user simulator with an error model
‘ error rate = 15%

The turn reward = -1 for each turn, and the success reward = 20.
The maximal length of dialogue is 25.

All the single-objective and multi-objective reinforcement learning are
trained for 3,000 sessions.



Application - Task-Oriented Dialogue Systems

Experimental Settings:

PyDial Agenda-base user simulator with an error model
error rate = 15%

The turn reward = -1 for each turn, and the success reward = 20.
The maximal length of dialogue is 25.

All the single-objective and multi-objective reinforcement learning are
trained for 3,000 sessions.

We evaluate learned policies on 5,000 sessions with near-uniformly
randomly assigned user preferences.



Application - Task-Oriented Dialogue Systems

Experimental Goals:

To investigate the applicability of our proposed deep MORL algorithms
in task-oriented dialogue policy learning.

oI first, how will the multi-objective reinforcement learning
~7 affect the efficiency of training process?

- Second, what is the optimality frontier for the brevity
and success objectives in a dialogue application?

‘w5 -Third, how do our proposed deep MORL algorithms better
// - fit users’ preferences?




success rate (%)

dialogue length (#turns)

Application - Task-Oriented Dialogue Systems

Envelope Version

Naive Version
Single-0Obj(0.5turn+0.5succ)
Single-0Obj(0.2turn+0.8succ)
Single-0Obj(0.8turn+0.2succ)

90-

80-

In a long-term, the multi-objective

s0- methods can achieve competitive
success rates & dialogue length to
the single-objective methods.

. We assume we have abundant

computational resources in the

. learning phase, and off-policy

learning is always available.

12-

10-

I I I | 1 1
500 1000 1500 2000 2500 3000

number of sessions
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20

15

10

Success Reward

Length Penalty

Success Reward

20
wm Ideal

«= Envelope Version

15

10

Length Penalty

Single-(0.5,0.5) | Single-(0.2,0.8) | Single-(0.8,0.2) Naive Envelope
Success Rate 88.18 + 0.90 85.30 + 0.98 87.62 + 091 86.38 £ 0.95 | 89.52 + 0.85
# Turns 8.93 +0.13 9.40 £ 0.16 7.42 +0.10 8.08+0.12 | 8.08 £0.12
User Utility 2.13 £0.23 1.84 + 0.23 253 +£0.22 238 £0.22 | 2.65 +0.22
AQ (¢ =0.1) 0.660 0.279 0.728 0.614 0.814




success rate (%)

Application - Task-Oriented Dialogue Systems

95 - Envelope Version
Naive Version
Single-0Obj(0.5turn+0.5succ)
Single-0bj(0.2turn+0.8succ)

90 - Single-0Obj(0.8turn+0.2succ)

G F |
q
UL
o
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70-

|
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

weigth of success

Our MORL methods can adapt to the user's preference, while the single-
objective methods cannot.
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dialogue length (#turns)
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Envelope Version

Naive Version
Single-0Obj(0.5turn+0.5succ)
Single-0bj(0.2turn+0.8succ)
Single-0Obj(0.8turn+0.2succ)

weigth of success

When the length of the dialogue is not important, our MORL algorithms
can sacrifice a bit brevity to ensure the success rate is above 90%



user utility

Application - Task-Oriented Dialogue Systems

Envelope Version
Naive Version

Single-0bj(0.5turn+0.5succ)

10- e - Single-ObJ:(O.2turn+0.85ucc)
= Single-0bj(0.8turn+0.2succ)

~
) . = ’
= j

| | | | | I | | |
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15-
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|
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\

weigth of success

The envelope deep MORL algorithm is almost always better than other methods in
terms of utility, and the naive version keeps a good level of utility under almost all
user preferences. Single-objective methods are good only when the user's weight of
success is close to their fixed preferences while training.



Conclusion

A
.
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Multiple
Competing Human
Objectives Preferences

Can we design an efficient learning algorithm,
which learns all potentially optimal policies, and adapts
optimally to any real-time specified preference?



Conclusion

o. Background 1. Theory contributions

- Reinforcement Learning - Theoretical Framework for Value-Based RL

- Two Value-Based Deep MORL Algorithms

- Naive Version: A simple extension
- Envelope Version

- Problem Formulation
- MO-MDPs
- Optimality Concepts
- Delayed Linear Preference Scenarios

/ \
—_ ~____Yes We Can!
2. Evaluation contributions 3. Application contributions
- Quantitive Evaluation Metrics - Task-Oriented Dialogue Systems
- Coverage Ratio - RL-Based Dialogue Policy Learning
- Adaptation Quality - Objectives: Brevity v.s. Success

- Synthetic Environments - User Adaptive Policies



