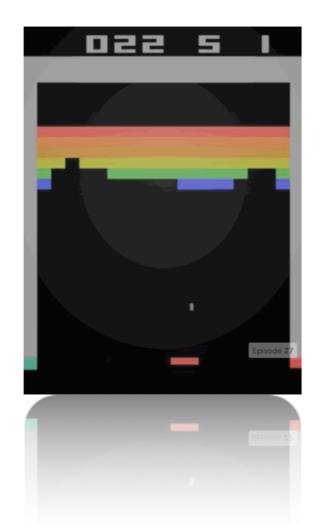
Value Iteration Networks

NIPS 2016 BEST PAPER

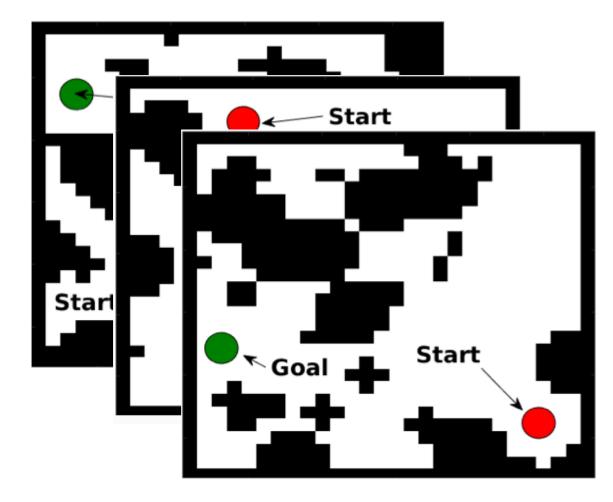
Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel @ Berkeley Artificial Intelligence Research Lab (BAIR)

- Deep RL learns policies from complicated visual input
- Learns to act, but does it **understand**?
- A simple test: generalization on grid worlds

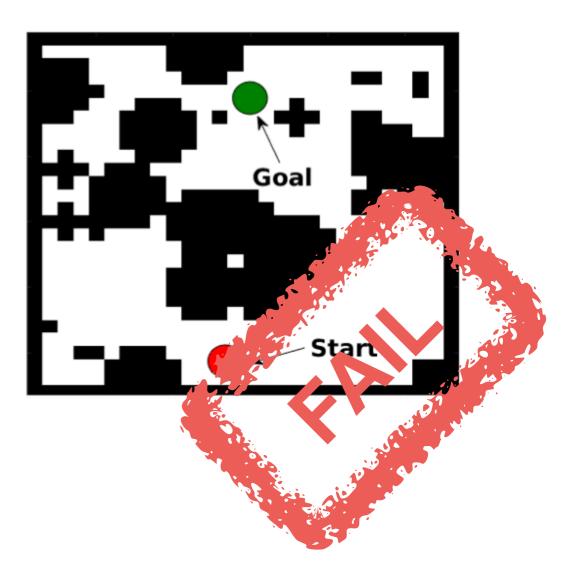


Runzhe Yang @ SJTU ACM CLASS

• A simple test: generalization on grid worlds



Train

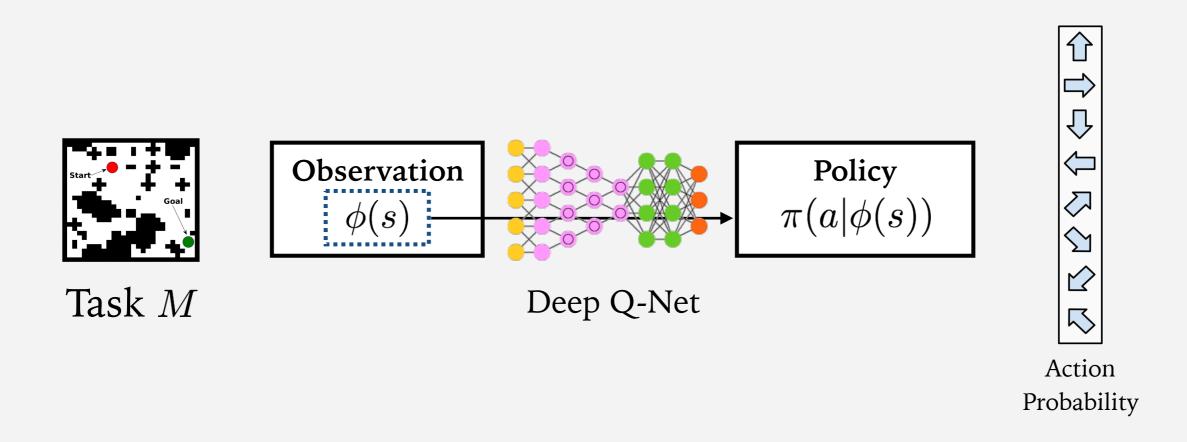


Test

Why doesn't it **understand**?

Introduction

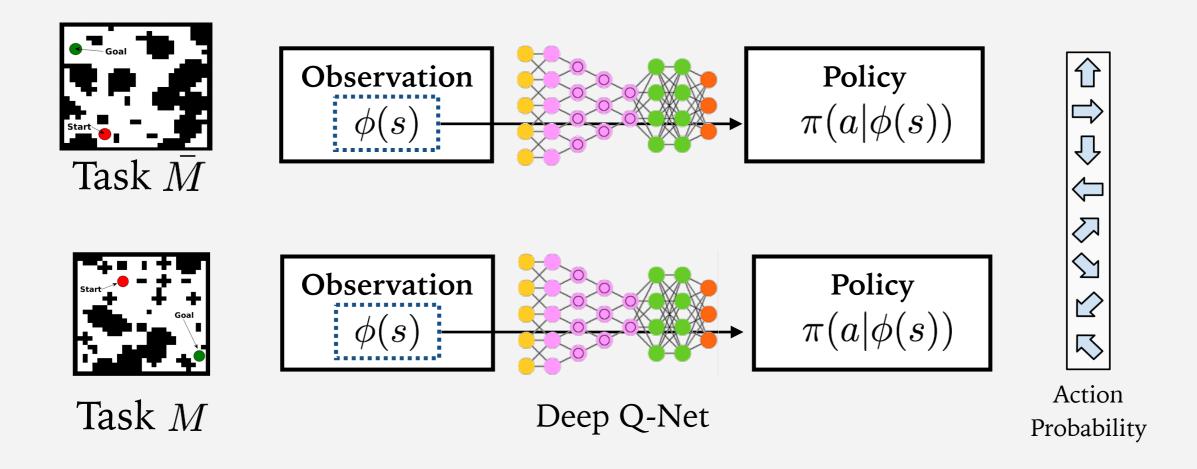
- A neural network (NN) is trained to represent a policy



Why doesn't it **understand**?

Introduction

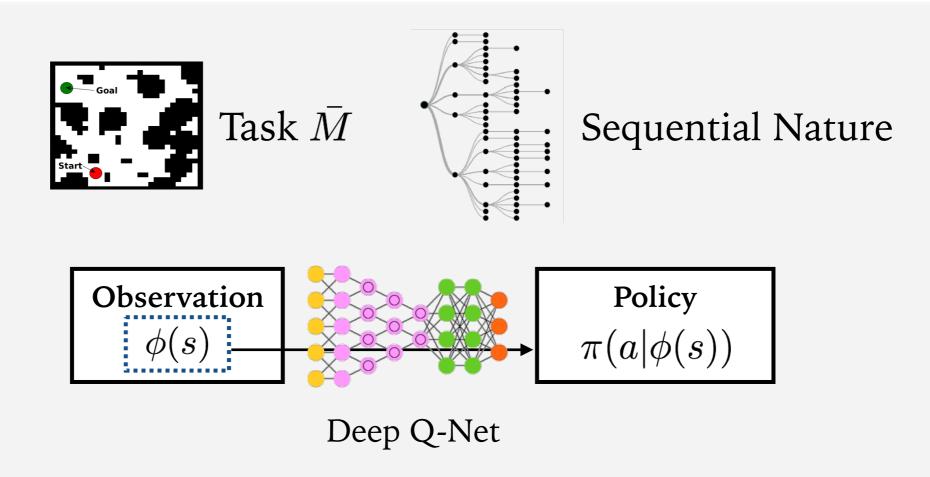
- A neural network (NN) is trained to represent a policy
- New task \rightarrow need to re-plan



Why doesn't it **understand**?

Why doesn't it **understand**?

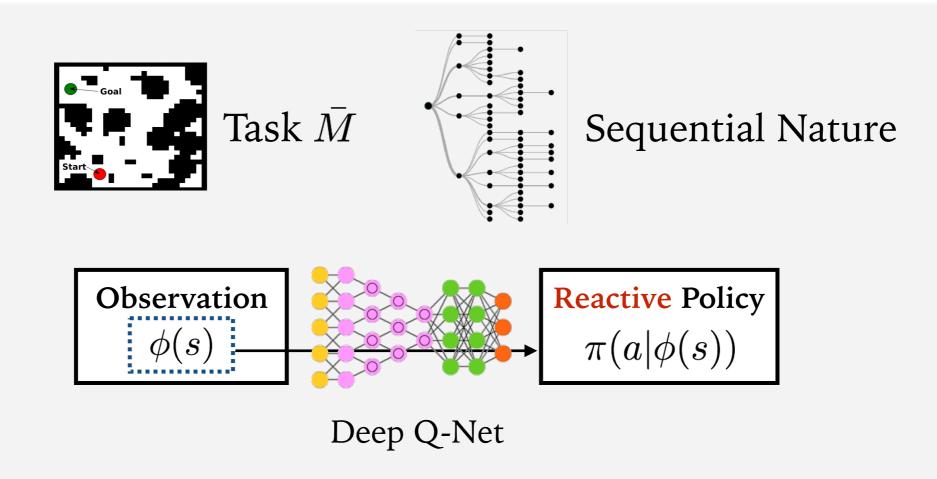
- A sequential problem requires a planning computation



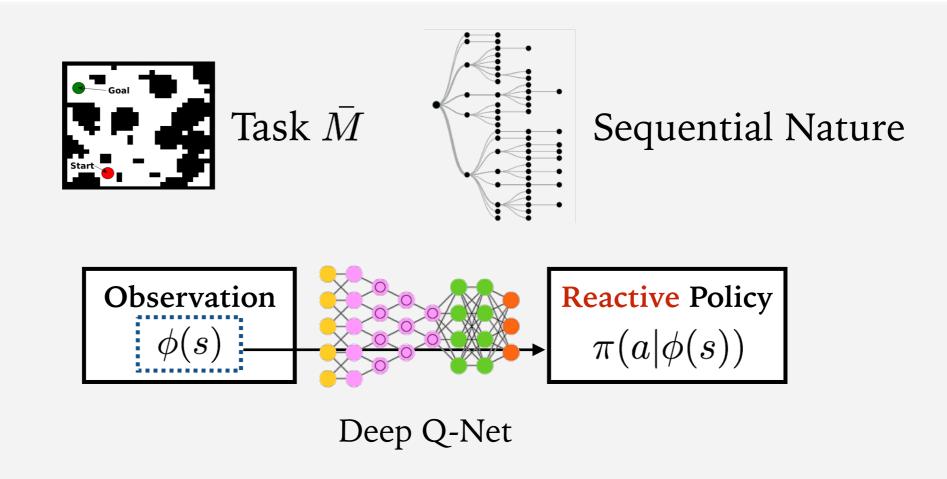
Introduction

Why doesn't it **understand**?

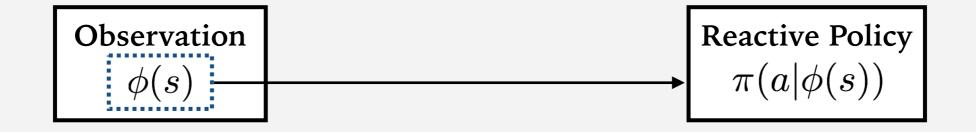
- A sequential problem requires a planning computation
- RL gets around that (learns a mapping, State \rightarrow Q-value)
- Lack of planning computation \Rightarrow bad understanding



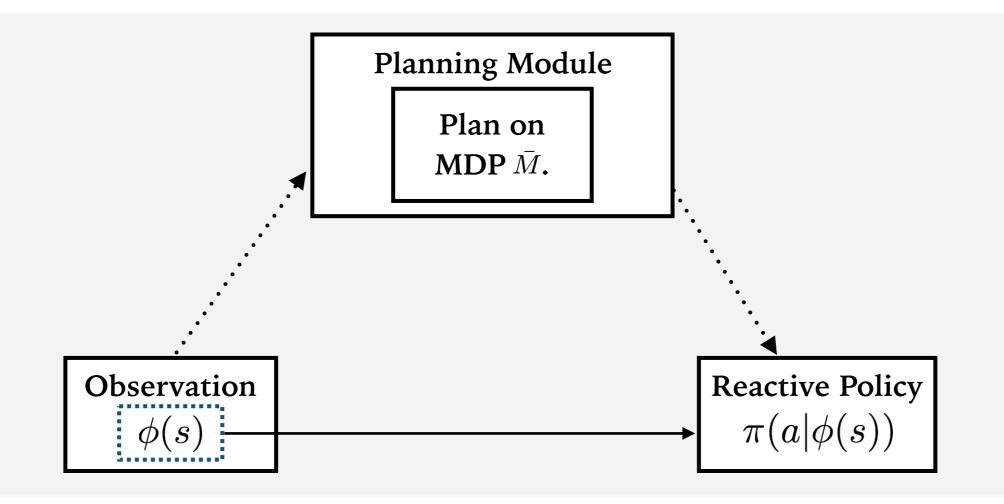
- In this work:
- Learn to plan
- Policies that generalize to unseen tasks



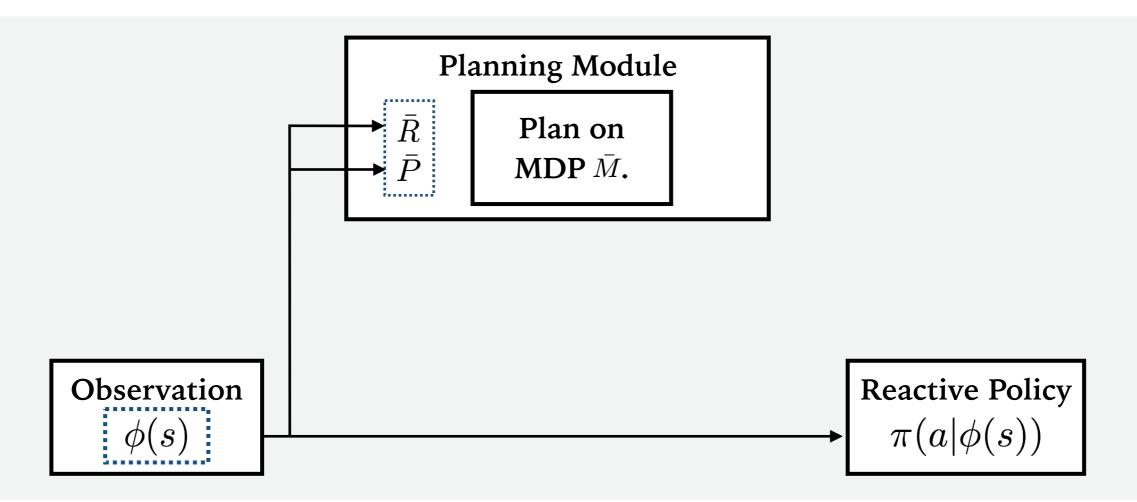
- Start from reactive policy



- Add an explicit planning computation
- Assumption: observation can be mapped to a useful (but **unknown**) planning computation

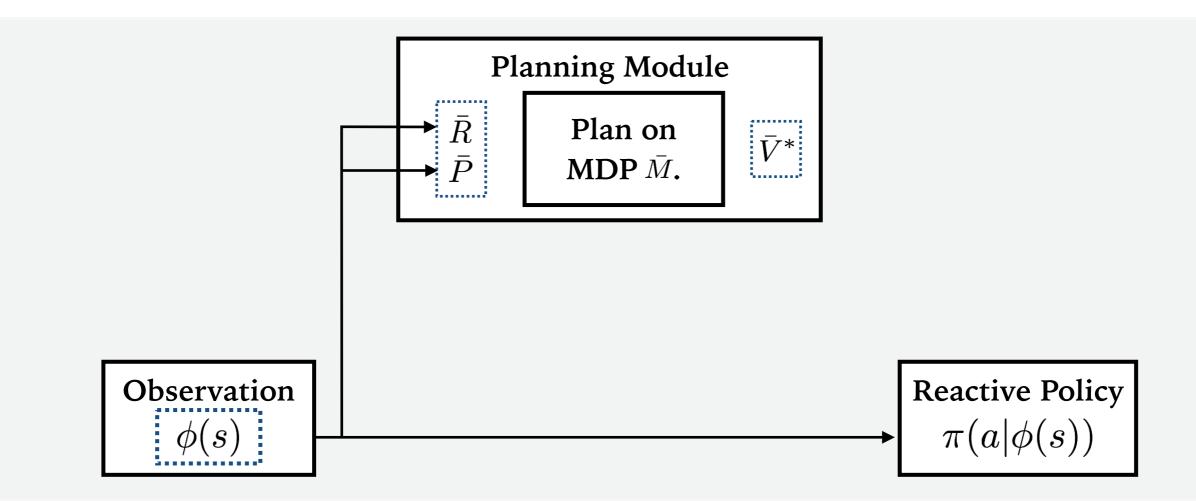


- NNs map observation to reward and transitions
- Later, learn on new MDP



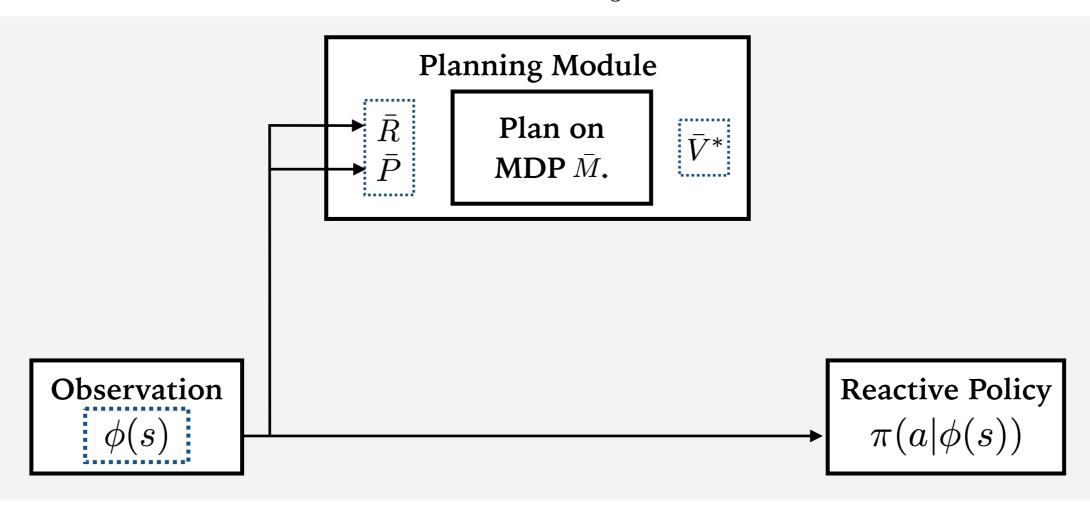
- How to use the planning computation?

- Fact 1: value function = sufficient information about plan



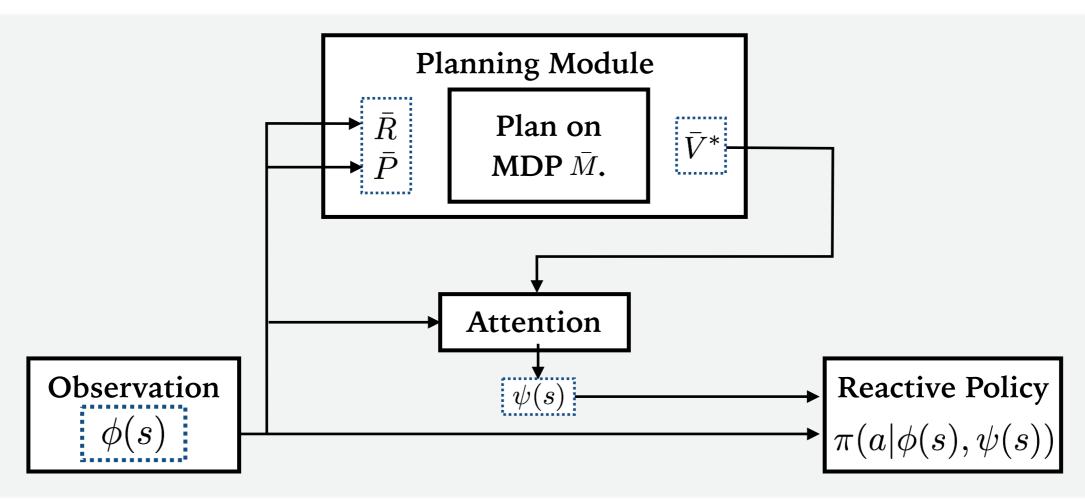
- Fact 1: value function = sufficient information about plan
- Fact 2: action prediction can require only subset of \bar{V}^*

$$\pi^*(a|s) = \arg\max_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^*(s')$$

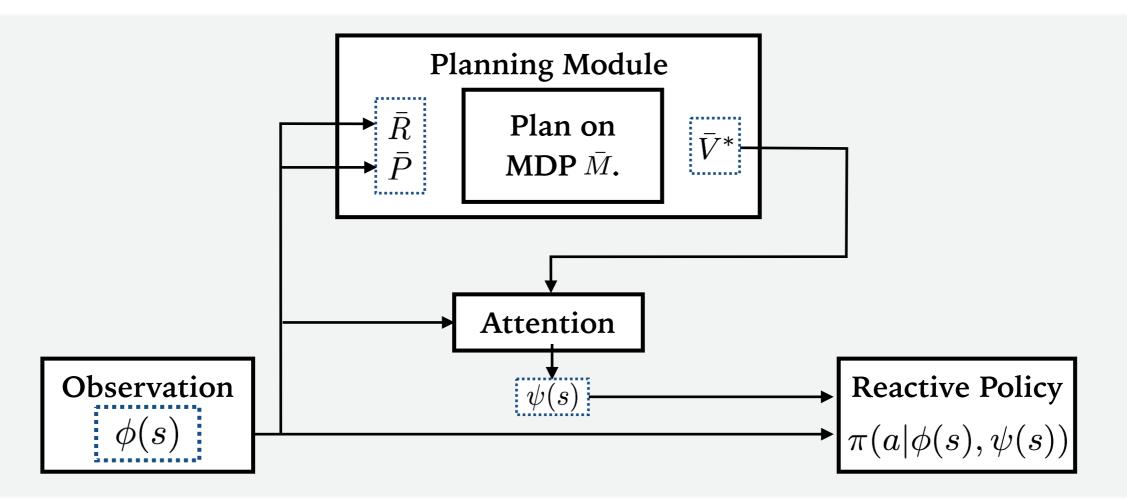


- Fact 1: value function = sufficient information about plan
- Fact 2: action prediction can require only subset of \bar{V}^*

$$\pi^*(a|s) = \arg\max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^*(s')$$

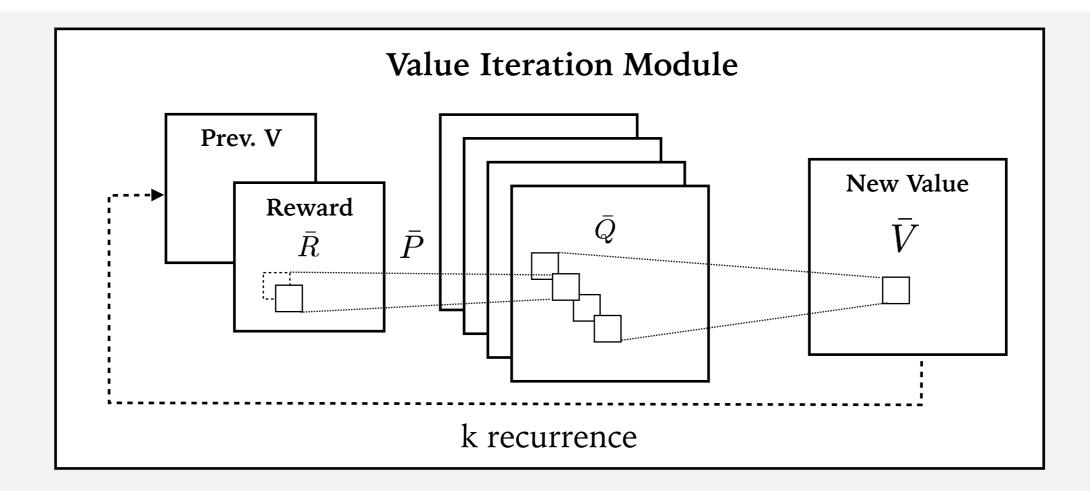


- Policy is still a mapping $\phi(s) \longrightarrow \operatorname{Prob}(a)$
- Parameters θ for mapping \overline{R} , \overline{P} , attention



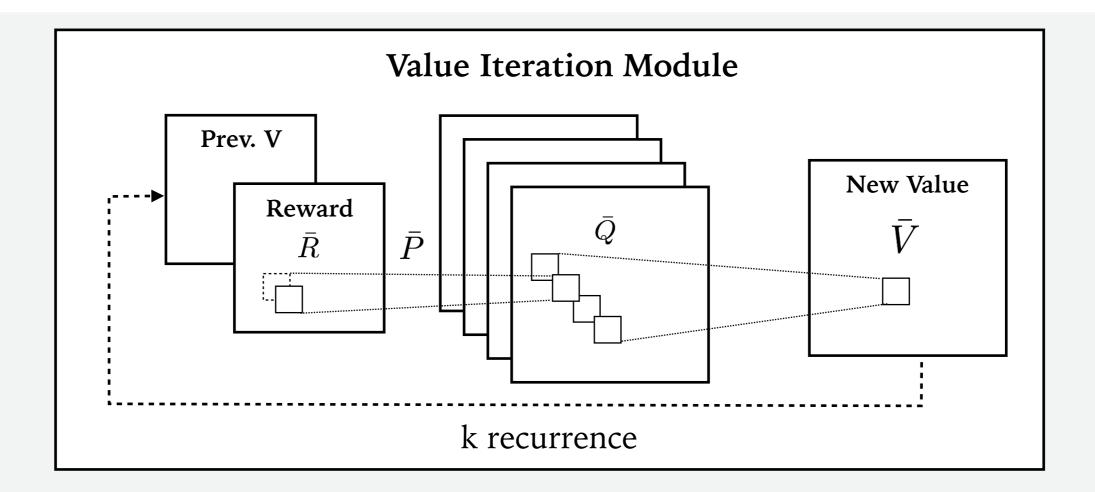
- How to back-prop through planning computation?

- Differential planner (Value Iteration \approx CNN)



Conv:
$$\bar{Q}_{\bar{a},i'j'} = \sum_{l,i,j} W^{\bar{a}}_{l,i,j} \bar{R}_{l,i'-i,j'-j}$$

- Differential planner (Value Iteration \approx CNN)

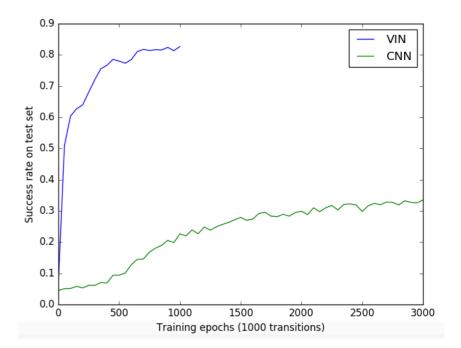


Conv:
$$\bar{Q}_{\bar{a},i'j'} = \sum_{l,i,j} W^{\bar{a}}_{l,i,j} \bar{R}_{l,i'-i,j'-j}$$
 Pool: $\bar{V}_{i,j} = \max_{\bar{a}} \bar{Q}(\bar{a},i,j)$

1. Grid-World Domain

Network	8 × 8	16 × 16
VIN	90.9%	82.5%
CNN	86.9%	33.1%

Table: RL Results – performance on **test maps**.



2. Mars Rover Navigation 3. Continuous Control

4. WebNav Challenge

Thank you!

