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Abstract

This research is driven by our curiosity
about the limits to which the current tech-
nology for natural language processing
could be pushed: if humans are capable of
reading jumbled sentences, can machines
do? To answer this question, we eval-
uate the ability of state-of-the-art mod-
els to recognize and comprehend word-
and character-level jumbled sentences, an-
alyze factors that may influence machine’s
performance, and devise potential cures
for enhancing models’ robustness. The
quality of sentences embeddings is inves-
tigated on three classic downstream tasks
mimicking human cognitive abilities, in-
cluding sentiment classification, informa-
tion retrieval, and semantic similarity, to
reflects machines’ capability in reading
jumbled sentences. We discover induced
biases in embeddings for jumbling sen-
tences which impairs machines perfor-
mance. The removal of these induced bi-
ases significantly improves machines’ ro-
bustness of reading character-level jum-
bled sentences on all three tasks.

1 Introduction

Recent decades have witnessed much convenience
in our daily life provided by the advances of nat-
ural language processing (NLP) techniques, from
instant online translators (Green et al., 2013) to
electronic health records (Jacobson and Dalia-
nis, 2016), and personal speech assistants (Chang
et al., 2017). Mainly due to the emergence of
deep learning and neural network based algo-
rithms, researchers have claimed that machines
achieved human-level performance or even be-
yond in many NLP application domains, such as

speech recognition (Xiong et al., 2016), machine
translation (Wu et al., 2016; Hassan et al., 2018;
Klein et al., 2017), and question answering (De-
vlin et al., 2018; Socher et al., 2018). Do ma-
chines really rival humans in comprehending lan-
guage? How do computers and humans differ in
ways of processing language? Is there any key
element which is very important for human lan-
guage understanding but still missing in state-of-
the-art NLP techniques? In this research project,
we are aiming at answering broad questions above
by investigating a specific cognitive task — can
machines read jumbled words and sentences?

Many studies on psychology and cognitive sci-
ence (McCusker et al., 1981; Mayall et al., 1997)
suggest that humans are capable of recognizing
and comprehending scrambled words and sen-
tences, though many of us do not realize it.

For emaxlpe, it deson’t mttaer in waht
oredr the ltteers in a wrod aepaprm, the
olny iprmoatnt tihng is taht the frist and
lsat ltteer are in the rghit pcale. The rset
can be a toatl mses and you can sitll raed
it wouthit pobelrm.

As we may find in the above paragraph1, when
letters in words are in disorder, we can still read
it without much difficulty. Actually, this cognitive
phenomenon is common not only among English
speakers. For instance, in Chinese, similar cogni-
tive phenomenon also exists in word-level pertur-
bation2.

If humans have this remarkable language abil-
ity as illustrated, to overcome the misspelling and
understand the jumbled nonsense, are our state-of-
the-art NLP systems, which hit human parity in
many tasks, also able to deal with garbled words

1https://www.livescience.com/
18392-reading-jumbled-words.html

2https://www.guokr.com/blog/443743/

https://www.livescience.com/18392-reading-jumbled-words.html
https://www.guokr.com/blog/443743/


and sentences? Since machines do not rigor-
ously mimic our language processing, what com-
ponents, in common, or unique to machines or hu-
mans, are essential to this ability?

Research in this direction has more practical im-
plications besides the satisfaction of curiosity and
the comparison between human and machine cog-
nition. When deploying an NLP system online in
a real application scenario, it is not always the case
that all words in the feeding target text or queries
are correctly spelled or in the right order. There-
fore, pre-processing of the input text via typo cor-
rection and normalization is usually required (Sun
et al., 2014). However, a general mechanism for
machines to generalize to directly deal with raw
text with out-of-vocabulary (OOV) words and dis-
ordered sentences is conceivably preferred, since
the pre-process cannot guarantee a perfect input,
and is hard to be fit for the online setting. In this
research, we harbor an ambitious hope to pave a
road to the understanding and design of this gen-
eral mechanism.

In this research, we are interested in finding:
(1) At which level of the jumbled text, can the
most advanced neural NLP systems read and un-
derstand? (2) What factors may influence cur-
rent neural NLP systems for achieving good per-
formances when reading jumbled sentences? (3)
How can we possibly improve the neural NLP sys-
tems to have more robustness of processing the
real-life natural language with rich diversity?

We design experiments to answer this three
questions by investigating the state-of-the-art
BERT model (Devlin et al., 2018) for sentence em-
bedding on different downstream tasks. The rea-
son we particularly interested in sentence embed-
ding is that word and sentence embeddings are the
fundamental components of every neural NLP sys-
tem (Pennington et al., 2014; Arora et al., 2017),
and they best demonstrate machines’ understand-
ing of texts as their inner representations.

The sentences in test cases is jumbled in the
letter- or word-level, at different levels of readabil-
ity judged by a human. The quality of sentence
sentences embeddings is investigated on three rep-
resentative downstream tasks mimicking human
cognitive abilities, including sentiment classifica-
tion (Wang and Manning, 2012), information re-
trieval (Li and Roth, 2002), and semantic similar-
ity (Cer et al., 2017), to reflects machines’ capa-
bility in reading jumbled sentences.

We discover induced biases in embeddings for
jumbling sentences which impairs machines per-
formance. Our experiments shows the removal
of these jumbling induced biases significantly im-
proves machines’ robustness of reading character-
level jumbled sentences on all three tasks.

2 Background

2.1 Psycholinguistics

To understand why human can overcome the typo
noise and scrambled words, psycholinguists devel-
oped several hypotheses. The first hypothesis is
about the strong language priori (Griffiths et al.,
2008). Since humans have strong priori on what
a “typical” word or sentence should be, we can
match quickly from error form to similar correct
form and then understand them correctly.

Moreover, the parallel processing hypothesis
(Townsend, 1990) and unit processing hypothe-
sis (Davis, 2004) maybe another factor for us to
consider. Psychological experiments (Rawlinson,
1976) showed that in most cases only the first and
the last letters matter in word recognition. The
experiment conducted by (McCusker et al., 1981)
also showed that swapped middle characters in a
word went unnoticeable by the human. (Mayall
et al., 1997) suggested that the shape of word plays
a significant role in word recognition instead of the
actual order. Humans may use parallel processing
to manage multiple stimuli at the same time of dif-
ferent quality. Those stimuli will be analyzed sep-
arately, compared to prior knowledge, and finally
combines the information in different weights, to
give brain with the most helpful information.

2.2 Adversarial Examples

Why do we care about the design of a robust model
to deal with noisy text? Many language models
assume that the input to the models is in a natu-
ral or well-behaved distribution. However, their
assumption may not hold in security-sensitive set-
ting (Biggio et al., 2012). It is quite dangerous
to have a machine learning system used with-
out handling the noise input (Goodfellow et al.,
2014). Even small imperceptible perturbation on
the input data, would cause huge prediction er-
ror (Szegedy et al., 2013) (Mei and Zhu, 2015).
On the other side, those imperceptible perturba-
tion errors can be easily made by a human without
notice, yet may cause misclassification in the lan-
guage model.



2.3 Related Work

Previous studies researches how the model han-
dles noisy text on the applications of informa-
tion retrieval and information extraction (Subra-
maniam et al., 2009). They defined different types
of noisy text and then surveyed some methods to
overcome this issue. However, it is not a detailed
survey containing standard test data for different
methods, the only limited field of methods are in-
vestigated and have no detailed analysis on advan-
tages, disadvantages and how to improve based on
current design. (Belinkov and Bisk, 2017) con-
ducted a character-based CNN that handles well
on machine translation tasks with black-box ad-
versarial training. (Sakaguchi et al., 2017) de-
signed a robust semi-character recurrent neural
network model to handle misspelled input text and
received great accuracy with jumbled text.

Our research overcome the above issues to pro-
vide a detailed investigation on a state-of-the-
art sentence embedding model incorporating the
advantage of language modeling, to figure out
whether the model is capable of extract informa-
tion correctly even with human typos, or what
specific factors may influence the model’s perfor-
mance. We use the same test sets in the original
paper, process the test set to make jumbled sen-
tences, in order to identify the effects of jumbled
words and sentences to the models, and how to im-
prove the model’s performance based on current
design and insights from these observed effects.

3 Methods

We designed a bunch of experiments to explore
whether machines, which use the state-of-the-art
BERT model for sentence embedding, can read
jumbled sentences. In order to compare machines
performance on the original text and the jumbled
text, we designed several jumbling algorithms,
performing ‘swap’, ‘omit’, and ‘add’ as basic op-
erations to jumble the text in the character level as
well as in the word level. We chose three down-
stream benchmark tasks for evaluating machines’
ability to “read” this sentence: Customer Review
(CR) (Wang and Manning, 2012), Text REtrieval
(TREC)(Li and Roth, 2002), and Semantic Text
Similarity (STS) (Cer et al., 2017). CR focuses on
sentiment analysis of customer products’ reviews,
giving outputs of positive or negative. TREC clas-
sifies the questions into different categories (e.g.,
“What are the twin cities?” should be classified as

LOC: City). STS measures the semantic simi-
larity between two sentences, evaluated as a num-
ber from zero to five, i.e., not similar to very sim-
ilar. We employ a benchmark toolkit for univer-
sal sentence representation (Conneau and Kiela,
2018) to simplify the process of unifying data for-
mats and training and test pipeline. After test-
ing the model, we compared the performances
on different tasks under the character-level and
the word-level jumbling schemes of different de-
gree of disorder. We also visualize the jumbled
sentence embedding using t-stochastic neighbor
embedding (t-SNE) (Hinton and Roweis, 2002)
and principle component analysis (PCA) (Wold
et al., 1987) to investigate whether the jumbled
sentences embedding shift with a biased or just
randomly distributed compared to the normal.

3.1 Pre-training of Deep Bidirectional
Transformers (BERT)

We use the state-of-the-art sentence embedding
model in our experiment, pre-training of deep
bidirectional transformers (BERT) (Devlin et al.,
2018). BERT learns a bidirectional word repre-
sentations, which is jointly conditioned on both
left and right context in all layers when pre-train
on deep bidirectional representations. The model
fine-tuned with one additional layer on a wide
range of tasks. This state-of-the-art model im-
proves the GLUE benchmark to 80.4% with 7.6%
absolute improvement. In our experiment, we
use a cased English model pre-trained by Google,
which has 12 layers, 12 heads, and about 110M
parameters. The size of embedding is 768 in all
our experiments.

3.2 Jumbling Schemes

We designed several jumbling schemes, which
performs swap, omit, and add (repeat) oper-
ations in character level and word level on the
text. The description of these schemes are in Table
1, and some examples of resulting jumbled sen-

Mode Function
swap randomly swap two adjacent words

with prob=x
omit randomly delete words with prob=x
add randomly repeat words with prob=x

Table 1: Character-level and word-level jumbling
schemes in swap, omit, and add modes.



Operation Example (word-level jumbling) Example (character-level jumbling)
Swap What considered the is costliest disas-

ter insurance the industry has ever ?
faced

What is consdiered the csotliset dis-
asetr the inuransce idnustry has ever
faedc ?

Omit What considered the costliest disater
the insurance industry faced ?

What is consiered the cosliest saster the
isrance industrindustry has ever faced ?

Add What is considered the costliest disas-
ter disaster the insurance industry has
ever faced ?

Whapt is considerehd thes costl-
ciessteb disasterb the insurancet indus-
trydu has everyu faced ?

Table 2: Examples of processed sentences under word-level and character-level jumbling schemes with
prob=0.2. Original: ”What is considered the costliest disaster the insurance industry has ever faced ?”

Dataset Task Description Example Text Label
CR Sentiment analysis of reviews We tried it out Christmas night

and it worked great
Positive

TREC Question Answering What are the twin cities? LOC:city
STS Measuring the semantic similarity {Liquid ammonia leak kills 15 in

Shanghai, Liquid ammonia leak
kills at least 15 in Shanghai}

4.6

Table 3: Task descriptions for Custom Review dataset, Text REtrieval Conference, and Semantic Text
Similarity with example input sentence and the corresponding ground truth label.

tences are shown in Table 2. In our experiment,
we set the probabilities of jumbling schemes at
{0.20, 0.35, 0.50, 0.65, 0.8} to simulated different
degree of confusion.

3.3 Downstream Tasks

To evaluate the ability of BERT model to read
jumbled texts, we test BERT in three downstream
tasks: Customer Review (CR) (Wang and Man-
ning, 2012), Text REtrieval Conference (TREC)
(Li and Roth, 2002), and Semantic Text Similarity
(STS)(Cer et al., 2017). CR task is a binary classi-
fication task about sentiment analysis of customer
products reviews, where the machine is required to
predict positive or negative after reading a user re-
view. We tried to see how much jumbled character
or word will affect the model’s ability to determine
sentiment information. The CR dataset we use
contains 2406 positive examples and 1367 nega-
tive examples. TREC task is an information re-
trieval or question answering task, where the ma-
chine aims to classify the user questions into six
categories: ABBR, DESC, ENTY, HUM, LOC, NUM.
It tests model’s ability to classify semantic infor-
mation of the jumbled text. We use 5500 labeled
sentences for training and 500 sentences for test-
ing. STS task measures the semantic similarity be-
tween two paired sentences in a scale from 0 to 5.

We used this task to evaluate the machine’s ability
to capture similarities between sentence embed-
dings of jumbled texts. There are 5749 training
sentences, 1500 validation sentences, and 1379
test sentences in the STS benchmark dataset. Ex-
amples of tasks are illustrated in Table 3. We use
PyTorch to train logistic regression models for CR
and TREC in the 10-fold fashion.

4 Experimental Results

4.1 Effects of Jumbling Levels and Degrees

Our first experimental goal is to investigate at
which level of the jumbled sentence the machine
can understand. The results of performance com-
parison among different jumbling schemes are
shown in Table 4, where the jumbling probabil-
ity is fixed as 0.2. As we expect, the machine
got all the best results on three tasks when read-
ing original text without jumbling. Note that the
original text may have only natural error inside
the text. The word-level jumbling will not impair
the performance too much on classification tasks.
There is only about 2% drop of the accuracy on
CR task, and 1% drop of accuracy on TREC task
for word-level swap and omit. The Pearson cor-
relation coefficient in STS task with human sim-
ilarity evaluation is about 0.53, which still indi-



Operation CR TREC STS
Random (baseline) 61.86 22.0 -0.014
Swap(char) 71.55 67.8 0.246
Omit(char) 69.03 68.4 0.286
Add(char) 69.91 66.4 0.293
Swap(word) 82.46 90.4 0.538
Omit(word) 82.68 90.4 0.530
Add(word) 82.70 87.0 0.536
Original 84.64 91.0 0.604

Table 4: Thes test performance comparison be-
tween word-level and character-level jumbled sen-
tence embeddings, original sentence embedding
and random embedding, evaluated on three differ-
ent downstream tasks with a jumbling probability
0.2. For tasks CR and TREC, the displayed num-
bers are accuracy. For STS task, the shown num-
bers are Pearson correlation coefficients, which
are the higher the better.

cates relatively strong correlation. The unsuper-
vised pre-trained feature in BERT helps the model
to still able to locate useful semantic and syntac-
tic information in word-level jumbled sentences.
As for the character-level jumbled sentences, the
machine’s overall performance on comprehending
these sentences in all three tasks is much worse
than that on the word-level jumbled sentences.
However, the machine still can “read” this sen-
tences compared to the random embedding base-
line. Note that character-level omit and add have
slightly better result than swap in the STS task in
terms of predicting sentences’ similarity. One pos-
sible reason is that the model incorporates word-
piece embeddings (Devlin et al., 2018), which di-
vides words into sub-word units in order to han-
dle rare words. Therefore, having less informa-
tion to divide into sub-word performs better than
swapped sub-words in similarity comparison task.

We further study how the machine’s perfor-
mance varies when the sentence is getting more
jumbled for both word and character level. Fig-
ure 1 shows results as curves of the test perfor-
mance as the jumbled probability increases from
0.2 to 0.8. All the test performance on the jum-
bled sentences are worse than the unjumbled sen-
tences jumbled while better than the random em-
bedding baseline, which indicates it is difficult
for machine to extract useful semantic informa-
tion from the jumbled sentences than original un-
jumbled sentence, and partial information may be

Customer Review

Text RETrieval

Semantic Text Similarity

Figure 1: Curves of the test performance on dif-
ferent tasks as the probability of jumbling in-
creases from 0.2 to 0.8. The test performance
on character-level jumbled sentences are generally
worse than that on word-level jumbled sentences
for all three tasks. When sentences get more jum-
bled using word-level omit, the test performance
on all three task drops rapidly.

lost, however, the machine is still able to extract
some of the rest information. The test perfor-
mance on character-level jumbled sentences are
generally worse than that on word-level jumbled
sentences for all three tasks, which is consistent
with our previous result. When sentences get more
jumbled using word-level omit, the test perfor-
mance on all three task drops rapidly. This could
be explained as the more word deleted from sen-
tence, the more semantic information would be
lost. The test performance only slightly changes
as sentences get more jumbled using other jum-
bling schemes, which suggests the machine’s abil-
ity to extract information from jumbled sentence



Figure 2: Word-level add jumbling operation on CR task in word level with t-SNE and PCA

Figure 3: Character-level add kumbling operation on CR task in word level with t-SNE and PCA.

is very limited, and slightly losing more informa-
tions from the sentence will not affect the test per-
formance too much since the main restriction of
performance is the machine’s capacity of captur-
ing semantic information from jumbled sentence
instead of competency or clearance of sentences.

4.2 Visualization of Jumbled Sentence
Embedding with Dimension Reduction

In order to understand better about the influence of
the word and character level jumbling, we then im-
plement t-SNE(t-distributed Stochastic Neighbor
Embedding) and PCA(principal component anal-
ysis) visualization of the sentence embeddings. t-
SNE will preserve local geometry relationship be-
tween original and jumbled text sentence embed-
dings. PCA will preserve distances and angles.
Figure 2 shows examples of visualizing jumbling
operation add on the CR task in word level. Fig-
ure 3 shows visualizing add jumbling operation

on the CR task in character level. From the t-SNE
visualizations, we can see that character level jum-
bling is significantly more violent than word level
jumbling. As we expect that jumbling characters
will deviate more from the original text. For the
PCA visualizations, we find obvious induced bias
in both jumbling embedding. These obvious bi-
ases inspire us that if we deduct the reversed bias
from the jumbled sentence embeddings, will the
new sentence embeddings improves the accuracies
of the jumbled text?

4.3 Effects of Induced Biases: A Simple Cure

To check our induced bias assumptions, we cal-
culate the average difference between original text
and jumbled text after convert them into lower di-
mensions using PCA. We then convert the bias
back into the original dimension and then sub-
tract the it from the jumbled sentence embed-
dings. The result of the induced biases for jum-



CR CR-bias TREC TREC-bias STS STS-bias
Original 84.93 90.8 0.6036
Swap (w) 84.43 62.28 89.2 89.6 0.537 0.475
Omit (w) 82.62 82.33 89.2 89.6 0.523 0.325
Add (w) 81.74 82.44 91.2 91.4 0.523 0.514
Swap (c) 69.04 81.86 69.6 86.8 0.219 0.463
Omit (c) 68.74 79.44 70.8 79.8 0.223 0.369
Add (c) 70.52 83.36 67.4 90.0 0.206 0.537

Table 5: The test performance compares the accuracies between jumbled sentence embeddings and re-
versed bias sentence embeddings for both word-level and character-level jumbling. For tasks CR and
TREC, the displayed numbers are accuracy. For STS task, the shown numbers are Pearson correlation
coefficients, which are the higher the better.

bling CR, TREC, STSBenchmark task in both
word and character level are shown in Table 5.
There are significant improvement in the character
level jumbling, as for word level Swap jumbling
bias reverse, the accuracies improves from 69.04
to 81.86, Omit jumbling improves from 68.74 to
79.44 and Add jumbling improves from 70.52 to
83.36. The removal of reversed bias significantly
improves the performances of the task especially
in the character level.

5 Contribution

In this project, we evaluate the state-of-the-art
models ability to process jumbled sentences on
three classic downstream tasks mimicking human
cognitive abilities, including sentiment classifica-
tion, information retrieval, and semantic similar-
ity. When comparing the performance with 0.2 to
0.8 jumbling probabilities, we found the machines
ability of reading jumbled sentences is more sensi-
tive to the types of jumbling than degrees of jum-
bling, and the induced biases of jumbled embed-
dings greatly impairs performance. After visualiz-
ing the original and jumbled sentence embeddings,
we find the possibility of removing induced bias to
further improve the sentence embeddings accura-
cies in CR and TREC task and Pearson coefficient
on the STS task. The removal of these induced
biases significantly improves the machines robust-
ness of reading character-level jumbled

Both authors of this paper contribute to the
literature review, discussion of experimental de-
sign, and result analysis. Runzhe designs the jum-
bling schemes, implements the sentence embed-
ding generation and evaluation pipelines for three
tasks and experiments with the influence of types
and degrees of jumbling on the performance of the

jumbled sentence embeddings. Zhongqiao visu-
alizes the jumbling and original sentence embed-
dings in t-SNE and PCA, and experiments with the
effect of reversed bias on the performance of the
jumbled sentence embeddings on all three tasks.

6 Conclusion and Future Work

In conclusion, when experiment with jumbling
probability, we find out that the changing of the
probability does not affect much on the perfor-
mance except for the Omit operation on the word
level. The Omit operation on the word level loses
more information as we increase the probability.
For the other schemes, they lose information with
bigger probability but the under remaining infor-
mation is still above machines extraction capacity.
Therefore, the main restriction of performance is
the machines capacity of capturing semantic infor-
mation from jumbled sentence instead of compe-
tency or clearance of sentences.

We get significant improvement in all three
tasks based on the induced bias removal, espe-
cially in character level. However, we are still not
sure intuitively why the character level has such a
clear and relatively stable bias when jumbling the
text. We will further analysis the structure of the
BERT model or the hidden effect of the character
level jumbling in future, to find out which factors
may contribute to induced bias and the improve-
ment of the performance.

Our future work will continue to explore the
jumbled sentence effect on more higher level lan-
guage comprehension tasks, compare the machine
performance variation with human performance
variation, and use prior knowledge and context to
improve the machine’s robustness on processing
jumbled texts without additional correctness and



annotation.
We also plan to conduct ablation study to an-

alyze those methods to dig deeper into why they
have different performances over handling jum-
bled text, what are the advantages and disadvan-
tages for the design, what specific structures or
component, e.g., language models (Peters et al.,
2018), should help NLP systems to understand
better, and finally how to improve based on those
designs or a new design.
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