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ABSTRACT
Crowdsourcing offers an economical means to leverage human wis-

dom for large-scale data annotation. However, the crowdsourced

labeled data often suffer from low quality and significant inconsis-

tencies, since the low-cost crowd workers are commonly lacking in

corresponding domain knowledge and might make cursory choices.

Most research in this area emphasizes the post-processing of the

obtained noisy labels, which cannot radically ameliorate the quality

of crowdsourcing service. In this paper, we focus on improving the

worker’s reliability during the label collecting process. We propose

a novel game-theoretical framework of crowdsourcing, which for-

mulates the interaction between the annotation system and the

crowd workers as an incentivized pedagogical process between

the teacher and the students. In this framework, the system is able

to infer the worker’s belief or prior from their current answers,

reward them by performance-contingent bonus, and instruct them

accordingly via near-optimal examples. We develop an effective al-

gorithm for the system to select examples, even when the worker’s

belief is unidentifiable. Also, our mathematical guarantees show

that our framework not only ensures a fair payoff to crowd workers

regardless of their initial priors but also facilitates value-alignment

between the annotation system (requester) and the crowd work-

ers. Our experiments further demonstrate the effectiveness and

robustness of our approach among different worker populations

and worker behavior in improving the crowd worker’s reliability.

KEYWORDS
Game Theory for practical applications; Reasoning about action,

plans and change in multi-agent systems; Human-robot/agent in-

teraction; Agents for improving human cooperative activities

1 INTRODUCTION
Recent decades have witnessed a huge benefit provided by crowd-

sourcing services to various applications of artificial intelligence,

such as computer vision [4, 11], natural language processing [1, 23]

and citizen science [8, 20], due to the fact that the emergent deep

learning and other machine learning tools often heavily rely on

huge amounts of manually annotated data. Compared with hiring

experts to label, online crowdsourced data annotation is a cheaper

and faster means to obtain a massive labeled dataset. However,

crowdsourced labels are usually noisy and poor in quality, because

of the problems with following two aspects of crowd workers’ reli-

ability during the label collection process:
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Figure 1: A comparison of crowdsourcing paradigms. The
pedagogical value-aligned crowdsourcing provides an inte-
grated solution to improving crowd workers’ integrity and
proficiency, and thus is more reliable than the others.

• Integrity As the annotation tasks are typically tedious, and

the goal of workers is to earn rewards, there might be some

dishonest workers who act hastily to finish tasks if the payoff

is not linked to the accuracy of their responses.

• Proficiency Since the crowd workers often have different

backgrounds, their competence to perform certain tasks may

differ. And some workers’ non-professional decisions would

be inconsistent with the those of experts.

Most research has improved the quality of the final crowdsourced

labels, without tackling these two problems head-on. These studies

focused on developing algorithms to aggregate noisy crowdsourced

data [3, 13, 19], allocating tasks to different individuals [10, 14] or

designing a mechanism to mitigate inadvertent mistakes of crowd

workers [17]. The reason for us to tolerate those “spammers" or un-

qualified workers is that building trust relationships with particular

workers is hard, and the majority will provide reliable results in

most cases [10]. However, when annotation tasks require specific

domain knowledge that people commonly don’t have, which is

normal in citizen science projects, integrity and proficiency prob-

lems will significantly impair the accuracy of crowdsourced data. If

we prequalify workers or adopt reputation-based mechanisms [22]

to allow only skilled workers or those with good reputations to

access tasks, it will increase the cost and still provide no guarantee.

Therefore, reducing workers’ dishonest behavior and improving

their expertise during the label collection process are two inevitable

challenges towards effective crowdsourcing.

However, how should we address the workers’ integrity and

proficiency issues during the label collection process? First, other
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than engaging workers with intrinsic incentives such as curiosity

[12] and enjoyment [7], there is some research on more realiz-

able approaches like incentivized crowd labeling [6, 21], which uses

performance-contingent bonuses to elicit worker effort under a lim-

ited budget. These ideas are creative for facilitating value alignment

between the system and the crowd workers to address the integrity

issue. Another orthogonal direction is to teach the crowd by letting

them review expert example solutions [5, 18], where the examples

are sampled from a small ground truth dataset labeled by experts

in advance. The optimal example selection can be formulated in a

submodular optimization problem [18], based on the assumptions

that the crowd worker’s prior is known and the worker’s behavior

is honest. However, this progress towards addressing integrity and

proficiency problems is still limited because they treat the incen-

tive and the teaching as two separate tools to enhance worker’s

reliability, and discount the interactive process in crowdsourcing.

When incentivizing crowds, they may be confused about how to

improve; when teaching crowds, they may be unwilling to follow.

Ourmain contribution is a general interactive crowdsourc-
ing framework, Pedagogical Value-aligned Crowdsourcing, which
leverages the system instruction as well as performance-contingent

bonuses to address both integrity and proficiency problems. It

formulates the interaction between the annotation system and

the crowd workers as a multi-round pedagogical game between

the “teacher" and the “student". We establish methods for the
teacher’s reasoning in interactive teaching settings, i.e. how
the teacher estimates the student belief and which examples the

teacher should choose. By analyzing the identifiability of the stu-

dent belief and performance, we derive an unbiased estimate of the

student performance. We provide an effective example suggestion

algorithm that maximizes the minimal submodular surrogate objec-

tive, guaranteeing a provable improvement for the rational learner

to achieve the teaching target even when the teacher is uncertain

about student belief.We further show two good properties of
our framework by investigating the student’s pragmatic behavior:

1) fairness– any worker who displays the same effort to learn from

examples would be treated fairly regardless of their initial belief of

the concept, and 2) value-alignment– the more the student earns,

the higher his final performance should be. Jointly, our framework

can attract a broader crowd worker population to truly contribute

to crowdsourcing tasks with high integrity and proficiency. We also

design experiments on simulated workers, which further demon-

strate the effectiveness and robustness of our approach among

various worker populations and behavioral characteristics to im-

prove crowd workers’ reliability.

2 GAME-THEORETIC MODEL OF
PEDAGOGICAL CROWDSOURCING

Our proposed pedagogical value-aligned crowdsourcing is a general

framework for those human-powered tasks which require some

domain knowledge. These tasks are common in the scientific pro-

cess. For instance, scientists seek help from the crowds to recognize

elephant calls from sound recordings of the rainforest, or to monitor

the wasting disease of eelgrass [2].

Our key idea is to view the interaction between the annotation

system and the crowdworkers as anN -round two-stage pedagogical

Table 1: Frequently Used Notations in this Paper

Notation Description Notation Description

U Instance Space Z Finite Features Set

X Labeled Instance Set (x, y ) Feature & Label

G Ground Truth Set
˜G All Instances & Labels

H 2
Z
, Hypothesis Space h∗ Target Concept

r Total Bonus (Given by the

end of the round N )

RS
Student Immediate Re-

ward (Bonus credits)

γ Improvement Ratio η̂t Estimated Performance

η̃t Anticipated Performance ot Revealed Examples

Pθ (x̃, ỹ ) Observation Model ρθ (h) Student’s Belief

game between the “teacher" and the “student". In each round, the

student first answers k sampled questions according to his current

belief or policy (strategy) at the practice stage. At the teaching
stage, the teacher infers the student’s current belief, estimates his

performance and sets an appropriate teaching target, then provides

several teaching examples to help the student acquire the concept.

If the student performance improves in the next round, then he will

receive a bonus. The total bonus is awarded to the student after he

finishes all the N -round annotation tasks. This paper considers the

following binary data annotation settings.

2.1 Binary Classification Settings
Suppose all instances in instance spaceU are independently drawn

from the same distribution D over some finite feature space Z,

of which a small subset X is labeled by experts accordingly to the

target concept h∗ ⊆ Z, but the remaining subsetU\X is unlabeled.

The ground truth G = {(x ,y) : x ∈ Z|X } consists of all the known
pairs of feature and label y = h∗ (x ) := 1x ∈h∗ ∈ {0, 1}, which is

unrevealed to the crowd workers initially. The crowd workers are

paid to annotate sampled instances x̃ ∼ D (Z) with binary labels ỹ.

The hypothesis space of the crowd workers,H ⊆ 2
Z
, is a finite set

containing possible hypotheses the workers might hold to label data.

We assume realizable settings where the target concept h∗ ∈ H .

2.2 Formal Definition of Pedagogical Game
The pedagogical value-aligned crowdsourcing models the interac-

tive teaching as a pedagogical game, an N -round two-stage Markov

game between the annotation system and the crowd worker, where

the system acts as the “teacher", T, who knows the ground truth G

and the worker acts as the “student", S, who may not know. The stu-

dent answers k questions (labels k sampled instances) each round

according to their initial belief. The teacher uses examples in the

ground truth set to help the student learn the target concept.

Definition 2.1 (Pedagogical Game). The pedagogical game is de-

scribed as a tupleM = ⟨S, {AT,AS},P (·|·, ·, ·), {RT,RS}, t⟩ with
following definitions:

• AT = 2
G
is an action space of the teacher. The teacher will

give a variable number of teaching examples in each round.

Letmt be the number of examples in round t .

• AS = H k
is an action space of the student. The student

answers k questions each round by choosing hypotheses.

• S = 2
G× ˜Gk is a finite set of states. Each state st = (ot ,дt ) ∈

S represents revealed examples in G so far before round t



Pedagogical Value-Aligned Crowdsourcing:
Inspiring the Wisdom of Crowds via Interactive Teaching AAMAS’18, July 2018, Stockholm, Sweden

✘ ✘✔ ✔ 

…

…

Expert Labeling Round 0: Practice Stage Round 0: Teaching Stage

…

belief

✘ ✔ ✘✔ ✘

…

…

Round 1: Practice Stage

✔ 

Round 1: Teaching Stage

✔ $$$ “Well  
Done!”

Round N-1: Teaching Stage

…

belief

$$$ “Well  
Done!”

… …
…

belief

… …

answer k questions

provide mt examples
& immediate reward

(a) (b) (c) (d)

(e) (f) (g)

Figure 2: The basic process of pedagogical value-aligned crowdsourcing. A small ground truth set is labeled by experts, and the
candidate features and hypotheses are elicited in advance (a). Each round, the annotation system random samples k instances
for the crowd worker to label (b). By observing the worker’s answers, the annotation infers the worker’s belief and selects
the most helpful examples (c). In the next round, the worker again labels k random sampled instances (d). If he improves, an
immediate bonus credit will be given along with this round of new examples (e). Repeating practice and teaching stages until
the (N -1)-th round (f), the worker will get paid by the end of the final round (g).

and k answers given by students in round t , where ˜G =

{(x̃ , ỹ) : x̃ ∈ Z and ỹ ∈ {0, 1}}.

• P (s ′ |s,aTt ,a
S
t ) is the transition model. In the pedagogical

game it is partially deterministic, o′ ← o ∪ki=1
aTt,i , whereas

the transition of д is associated with sampling from D (Z).

• RT is the teacher’s reward, which is equivalent to the student

performance (see definition 2.2) in the final round.

• RS : S 7→ (−∞, 1] is the student’s immediate reward, where

RS (st ) indicates how many bonus credits should be given

to student in round t . The total bonus student will gain

in the final round is related to the cumulative reward r =[∑
t R

S (st )
]+

. If the cumulative reward is less than zero, the

student will not earn any extra bonus.

• t ∈ {0, 1, . . . ,N − 1} is the round counter.

The basic process of the game is illustrated in figure 2. The game

proceeds in N rounds. In each round t , there are two stages:

1) Practice Stage The student takes aSt = (h(1) , . . . ,h(k ) ) se-
quentially to answer questions (x̃1, . . . , x̃k ) independently
sampled from data distribution D (Z). A partial state transi-

tion дt ← {(x̃i ,h
(i ) (x̃i )) : i ∈ [k]} will happen by the end of

practice stage.

2) Teaching Stage The teacher observes answers дt made

by the student in the previous stage and infers the stu-

dent’s current belief. Then teacher selectsmt examples aTt =
{(x1,y1), . . . , (xmt ,ymt )} in the unrevealed ground truth set

G/ot . One partial state transition ot+1 ← ot ∪
k
i=1

aTt,i will

proceed by the end of teaching stage.

Two parties’ behavior in this pedagogical game is defined by a

pair of policies (πT,πS), that determine how teacher and student

acts respectively. We assume the student independently picks k

hypotheses following his policy, i.e. πS (aSt |ot ) =
∏

i ∈[k]
ρt (h

(i ) ),
where ρt is student’s belief over hypothesis space. Since there exists

a bijection between πS (·|ot ) and ρt , we use terms {student belief,

student policy} interchangeably in the following article.

Definition 2.2 (Student Performance). The student performance η
of a student’s policy πS (·|ot ) is the expected label accuracy mea-

sured on the ground truth set

η(πS (·|ot )) := Eh∼ρt



1

|G|

∑
(x,y )∈G

1{h(x ) = y}


,

where 1{·} = 1 if the condition in {} is true otherwise it is 0, and

ρt (·) is the equivalent belief to π
S (·|ot ). For convenience, we also

define η(ρt ) := η(πS (·|ot )).

In every teaching stage, the teacher will set a target on the

student’s next round performance η̃t+1 and select examples to

help the student reach the target, i.e. η(π̃S (·|ot+1)) ≥ η̃t+1. If the

estimated student performance in the next round, η̂t+1 surpasses

the target performance, the student will receive full bonus credits

as an immediate reward from the teacher. The teacher’s reward is

the final student performance, and the student’s reward is

RS (st+1) =



1, η̂t+1 ≥ η̃t+1

η̂t+1−η̂t
η̃t+1−η̂t

, η̂t+1 < η̃t+1

in the (t + 1)-th round. It can be shown that this reward design for

the crowd workers is fair and motivational.

In the next two sections, we will first discuss the teacher’s strat-

egy in the pedagogical game, which is associated with how the

teacher estimates the student’s current policy πS (·|st ) (or belief
ρt (·)), sets target performance η̃t+1 for student’s next round per-

formance and gives most helpful examples aTt , or all in one phrase,

the pedagogical reasoning, and then analyze the student’s pragmatic
behavior to see how the crowd workers, no matter their honesty

and proficiency, are incentivized to participate in the pedagogical

game and to pursue the value aligned with the system.
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3 ON TEACHER’S PEDAGOGICAL
REASONING

In order to set appropriate teaching targets and teach the student

with the most helpful examples, the teacher needs to assess the

student’s belief over hypotheses space as well as the student current

performance. Different from previous work on teaching crowds [18]

and machine teaching [24] which assume the student’s prior (ini-

tial belief) is known, the teacher in the pedagogical value-aligned

crowdsourcing estimates student’s belief by observing answers

each round in the interaction and then determines the best batch

of examples for rational learners accordingly.

3.1 Belief Estimation
The parametric probabilistic model explaining the teacher’s ob-

servation in pedagogical game is described below. In each round

a student picks hypotheses aS = (h(1) , . . . ,h(k ) ) in a generalized

Bernoulli process, each step with a probability ρ (h(i ) ), where ρ is a

categorical distribution parameterized as ρθ (hi ) = eθi /
∑
hj ∈H eθ j ,

θ ∈ Θ = R |H | , which guarantees a “grain of truth" for ratio-

nal learning [9]. The teacher can only observe k answers дt =

{(x̃1, ỹ1), . . . , (x̃k , ỹk )} from the student, where ỹi = h(i ) (x̃i ) for
i ∈ [k]. The goal of belief estimation is to find a point estima-

tor of student’s belief ρθ (·) by samples drawn from the marginal

distribution of observation

Pθ (x̃ , ỹ) =
∑
h∈H

Pθ (x̃ , ỹ |h) · ρθ (h),

where Pθ (x̃ , ỹ |h) = PD (x̃ ) · 1{h(x̃ ) = ỹ}.
However, an accurate estimation of the student’s belief is not

always available since the observationmodel could be unidentifiable

[15], which means there would be multiple student beliefs leading

to the same observation distribution. In this case, the teacher may

draw inconsistent conclusions from the same observed answers. To

meaningfully discuss the belief estimation, we have to first verify

the identifiability of student belief and performance.

Definition 3.1 (Identifiability [15]). In a probability space (Ω, E, P ),
where F is the σ -algebra defined on sample space Ω and P = {Pθ :

θ ∈ Θ} is a family of parameterized probability measure, two points

θ1 and θ2 ∈ Θ are said to be observationally equivalent (written as

θ1 ∼ θ2) if Pθ1
(E) = Pθ2

(E),∀E ∈ E.

(1) The point θ1 is said identifiable if θ1 ∼ θ2 ⇒ θ1 = θ2.

(2) The model P is said identifiable if the quotient set Θ/ ∼ is

the finest possible partition.

(3) A function φ (θ ) is identifiable if ∀θ1,θ2 ∈ Θ,θ1 ∼ θ2 ⇒

φ (θ1) = φ (θ2).

Proposition 3.2. In the pedagogical game, the student’s belief
can be unidentifiable, whereas the student performance is always
identifiable.

The basic idea to prove proposition 3.2 is to show that the linear

transformation mapping student belief space to the observation

space is commonly rank-deficient, while equivalent observation

implies the same student performance. As illustrated in figure 3,

the teacher can estimate the current student performance using

any belief in the equivalent class of the real belief.

Belief SpaceObservation Performance

⌘̂

⇢̂✓⇢✓ 0
1�(H)

[⇢̂✓]

P✓

�(G̃)

Figure 3: Pedagogical reasoning about student belief and per-
formance. Theremight bemultiple beliefs corresponding to
the same observation distribution. But the teacher can use
any of them to infer the student performance.

The following theorem provides amethod to estimate the student

performance unbiasedly.

Theorem 3.3. If ρ̂θ is a maximum likelihood estimate (MLE) of
the student’s belief, the induced estimator of student performance,
η(ρ̂θ ), is unbiased.

Proof. Let k i.i.d random variables (X̃1, Ỹ1), . . . , (X̃k , Ỹk ) ∼ Pθ
be the observation. Maximum likelihood estimates of θ is derived

by maximizing L (θ ; X̃ , Ỹ ) :=
∏k

i=1

∏
(x,y )∈ ˜G

Pθ (x ,y)
Λ
x,y
i , where

random variable indicators Λ
x,y
i := 1{X̃i = x , Ỹi = y}. Note

that

∑
(x,y )∈ ˜G

Pθ (x ,y) = 1, the concave function L (θ ; X̃ , Ỹ ) =∏
(x,y )∈G̃ Pθ (x ,y)

∑k
i=1

Λ
x,y
i of Pθ (x ,y) has a global maximum L∗.

Consider the Lagrange function

F (θ ) = logL (θ ; X̃ , Ỹ ) − λ
*..
,

∑
(x,y )∈G̃

Pθ (x ,y) − 1

+//
-
.

If
ˆθ is a maximum estimate, then F ( ˆθ ) achieves its maximum logL∗.

Assume Pθ (x ,y) > 0 for all (x ,y) ∈ ˜G (otherwise (x ,y) < ˜G almost

surely), we have

∂F (θ )

∂Pθ (x ,y)
���θ= ˆθ

= *
,

∑k
i=1

Λ
x,y
i

Pθ (x ,y)
− λ+

-
���θ= ˆθ

= 0,

for all (x ,y) ∈ ˜G. Therefore, when P
ˆθ (x ,y) =

∑k
i=1

Λ
x,y
i

λ , where

λ =
∑

(x,y )∈ ˜G

∑k
i=1

Λ
x,y
i = k , the likelihood function achieves

its maximum. When the model is unidentifiable, there would be

multiple MLEs
ˆθ , but all of them have the same induced estimator

of student performance η̂ as we argued in Proposition 3.2. Recall

the definition 2.2 , the η̂ is

η̂ = η(ρ
ˆθ ) =

1

|G|

∑
(x,y )∈G

1

PD (x )
·

∑k
i=1

Λ
x,y
i

k

Taking expectation over all observations results in EPθ [η̂] = η(ρθ ).
Hence, the induced η̂ is an unbiased estimator. □

Since finding a maximum likelihood estimate of the student

belief is necessary for teaching and not difficult to compute, we can

obtain the unbiased estimate of student performance as a byproduct,

which reduces extra computations.
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3.2 Optimal Teaching
The interactive teaching requires the teacher to set appropriate

teaching targets based on students’ current performance and give

students the most helpful examples according to their current belief.

We first introduce the setting of teaching targets and the learning

model of honest students.

Definition 3.4 (Teaching Target). Given the estimate of the student

current performance η̂t , the teaching target is the standard of the

next round student performance

η̃t+1 = γ · (1 − η̂t ) + η̂t ,

where γ ∈ (0, 1) is called “improvement ratio".

Supposing a student is cooperative and rational, cognitive psy-

chologists suggest the effects of teaching examples can be captured

by the Bayesian model [16]. Formally, the student rational learning

is defined as following a belief updating process.

Definition 3.5 (Rational Learning). Given a set of examples ot ,
the current belief ρt−1, the rational learning is to update belief as

its Bayesian posterior,

ρt (h) ←
P
learner

(ot |h)ρt−1 (h)∑
hj ∈H P

learner
(ot |hj )ρt−1 (hj )

where P
learner

(ot |h) =
∏

(x,y )∈ot σα (h(x ),y), and σα is a noise-

tolerant likelihood function,

σα (h(x ),y) =
1

1 + e−α ·(1−2 |h (x )−y |)
.

We use Z (ρ) =
∑
hj ∈H

∏
(x,y )∈ot σα (h(x ),y)ρ (hj ) and the oper-

ator ψ (ρt−1,ot ) := ρt to denote the partition function and the

rational learning in short form.

The scaling parameter α controls the impact of shown examples

on student’s belief, which can also be interpreted as student learn-

ability assumed by the teacher. The larger the α is, the stronger the

impact of counterexamples will be on eliminating student inconsis-

tent hypotheses.

To select the best examples, the teacher estimates the effect of

new examples aTt to a model student with displayed learnability α
and current belief ρ̂θ . The anticipated student performance is

η̂t+1 (a
T
t ) = η(ψ (ρ̂θ ,ot ∪ a

T
t )) = u

TΨρ̂θ ,

where each entry of |H |-vector u is the accuracy of hypothesis

on the ground truth, u (h) = 1

|G |
∑

(x,y )∈G 1{h(x ) = y}; and Ψ is

an |H | × |H |-diagonal matrix, whose diagonal entries are Ψh,h =
1

Z (ρ̂θ )

∏
(x,y )∈ot∪aTt

σα (h(x ),y).

Finding the minimal aTt such that the student next round per-

formance η̂t+1 (a
T
t ) reaches the teaching target η̃t+1 is an NP-hard

combinatorial optimization problem [18]. Instead of directly solving

this difficult problem, we try to improve a surrogate student perfor-

mance η′t+1
= 1 − (1 −u)TΨ′ρ̂θ , where Ψ

′ = Z (ρ̂θ )Ψ discarding

the partition function, which makes η′t+1
easier to improve.

To see the effectiveness of this approach, we first introduce two

lemmas. In Lemma 3.6 we derive upper and lower bounds of real

performance by using a surrogate student performance. Lemma

3.7 shows the surrogate loss is a monotonic submodular function.

Using these two lemmas, we show the effectiveness and efficiency

Algorithm 1 Pedagogical Reasoning - Teaching

1: procedure Teaching(ot , [ρ̂θt ], G, {ψ(x,y ) })

2: aTt ,ψ ← {},
⊗

(x,y )∈ot ψ(x,y )
3: ∆β ← (1 − (1 − γ )) (1 − η̂t )

4: while η̃′t+1
− η̂t < ∆β do

5: for (x ,y) ∈ G\(ot ∪ aTt ) do
6: E(x,y ) ← min

ρ ∈[ρ̂θt ]

1 −ψT(x,y ) (ψ ⊗ (1 −u) ⊗ ρ)

7: end for
8: a ← arg max(x,y )∈G E(x,y )
9: η̃′t+1

← Ea
10: aTt ,ψ ← aTt ∪ {a},ψa ⊗ψ

11: β ← minρ ∈[ρ̂θt ]
ψT ρ

12: ∆β ← (1 − β (1 − γ )) (1 − η̂t )
13: end while
14: return aTt
15: end procedure

of greedy improving the surrogate performance in Theorems 3.8 &

3.9 , even when the student belief is unidentifiable.

Lemma 3.6. Let Ψ′ = Z (ρ̂θ ) · Ψ, and η̃′ = 1 − (1 − u)TΨ′ρ̂θ ,
we have η̃′ ≥ η̃ ≥ 1

β · η̃
′ −

1−β
β , where β ∈ (0,Z (ρ̂θ )] controls the

scaling ratio.

Lemma 3.7. The surrogate performance η̃′ is a monotonic submod-
ular function of the teaching examples ot .

We provide a proof sketch. First, write η′ =
∑
h∈H (1 − u (h)) ·

ρ̂θ (h) ·P (ot |h)+η̂, where P (ot |h) = 1−
∏

(x,y )∈ot σα (h(x ),y). Then
we verify for any oa ⊆ ob ⊆ G, the set function P (ob |h) ≥ P (oa |h)
and P (ob ∪ (x ,y) |h) − P (ob |h) ≤ P (oa ∪ (x ,y) |h) − P (oa |h). □

Theorem 3.8. When the model is unidentifiable, i.e., there is an
equivalent class [ρ̂θ ] , {ρ̂θ }, greedily selecting examples aTt ⊆ G\ot
to increase the worst improvement EaTt = minρθ ∈[ρ̂θ ]

(1 − u)T (I −
Ψ′
aTt
)ρθ until EaTt is no less than (1 − β (1 − γ )) (1 − η̂), ensures η̃

achieves the teaching target (γ · (1 − η̂) + η̂).

Proof. Theorem 3.8 is a direct consequence of Lamma 3.6. □

Theorem 3.9. Given the current student performance η̂ and the tar-
get improvement ratio γ , by greedily providing OPT(η̃′ξ ) · log

1

ξ β (1−γ )
examples it is guaranteed to improve the student performance to the
teaching targetγ (1−η̂)+η̂, where η̃′ξ = η̂+[1−β (1−ξ ) (1−γ )]· (1−η̂)

and OPT(·) is the minimal number of examples to increase surrogate
performance to a certain value.

Proof. From lemma 3.7, we know that η̃′ is a nonnegative mono-

tone submodular function. Using the result of greedy maximization

of submodular function that for any ℓ and k ,

f (Sℓ ) ≥
(
1 − e−ℓ/k

)
max

S : |S |=k
f (S ),

where Sℓ is the set picked after ℓ steps.

Let k∗ = OPT(η̃′ξ ), when ℓ ≥ k∗ log
1

ξ β (1−γ ) , we have

η̃′(Sℓ ) − η̂ ≥ (1 − ξ β (1 − γ )) (η̃′ξ − η̂)

≥ (1 − β (1 − γ )) (1 − η̂).
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This indicates greedily providing OPT(η̃′ξ ) · log
1

ξ β (1−γ ) more ex-

amples will absolutely improve the student performance to the

teaching target. □

Jointly, theorems 3.8 and 3.9 depict the effectiveness and ap-

proximate optimality of greedy algorithm 1 (where the vector

ψ(x,y ) = [σα (h(x ),y)]
T
h∈H ) , to improve the workers’ proficiency.

4 ON STUDENT’S PRAGMATIC BEHAVIOR
In this section, we will investigate the crowd worker’s pragmatic

behavior in the pedagogical crowdsourcing. If a worker is dishon-

est and behaves badly, he is supposed to earn no extra bonus from

the task. However, those hardworking but initial non-professional

workers are supposed to earn more money if they learn from pro-

vided examples. Our aim in this section is to show: 1) The worker

feels fair about the bonus no matter what prior he initially holds;

2) Workers will pursue the aligned value with the system, i.e., the

more the student earns, the higher his final performance should be.

4.1 Fairness: Prior Does not Matter
We state the fairness property as the following theorem:

Theorem 4.1. Two workers who have different initial beliefs (pri-
ors) but the same displayed effort will earn the same amount of
bonuses.

Here, the displayed effort is student’s relative improvement to

the teaching target each round. It is easy to verify that the final

bonuses only depends on how well they achieve the adaptive teach-

ing targets which eliminate the influence of prior.

This fair design has many benefits for the crowd workers. First,

the skilled crowd workers who are good at certain annotation tasks

can happily get the full bonus, as long as they keep their perfor-

mance during the task, since the required improvement is negligible.

Second, a student who has almost no background knowledge can

earn the full bonus as long as he can reach the teaching target every

round, since our bonus mechanism is prior-free and encourages

improvement. If the system gives bonus according to his absolute

performance every round, he will receive almost the lowest payoff

in the task and soon he will fail to contribute. Moreover, this fair

design will attract more workers, because it really relaxes the rules

for entry. Our results in the next section show that, in order to earn

more bonuses, his performance must finally improve to required

levels with the help of teaching examples. Therefore, these newly

recruited workers indeed can make contributions to the task.

4.2 Value-Alignment: Rational Learning as
Student’s Optimal Policy

From the organizer’s perspective, this teaching incentive design

actually facilitates the value alignment between the teacher and

the student. The more the teacher pays, the higher the student

performance is guaranteed for any individual worker. Our main

results of value alignment are shown below.

Lemma 4.2. If a student S earns ω ∈ (0, 1) in each round, then
his his overall improvement ∆ = ηN−1 − η0 should be no less than
ω∆̄, where ∆̄ = η̄N−1 − η̄0 is the overall improvement of a “model"

student who has the same initial performance and exactly achieves
each round target.

Proof. Let ∆(η) = γ (1 − η) be the required improvement for

achieving the teaching target of η. It is easy to verify two properties:

if η (1) ≤ η (2) , then (a) ∆(η (1) ) ≥ ∆(η (2) ), and (b) η (1) + ∆(η (1) ) ≤

η (2) + ∆(η (2) ). Let η̄0, η̄1, . . . , η̄n−1 be each round of performance

of the model student, and η0,η1, . . . ,ηn−1 be each round of perfor-

mance of student S. η0 = η̄0 Suppose the teacher estimates his per-

formance accurately. Using the property (b), we know that ηt ≤ η̄t ,
for all t ∈ {0, . . . ,N −1}, since η1 < η̄1 and ηt−1 ≤ η̄t−1 ⇒ ηt ≤ η̄t .
Furthermore, according to property (a) we know each round of S’s
improvementω∆(ηt−1) should be no less thanω∆(η̄t−1). Therefore,

∆ =
N−1∑
t=1

ω∆(ηt−1) ≥ ω
N−1∑
t=1

∆(η̄t−1) = ω∆̄.

Hence, a student earning constantω ∈ (0, 1) each round has overall

improvement at least ω∆̄, where ∆̄ is the overall improvement of

the model student. □

Theorem 4.3. If a student S earns ω ∈ (0, 1) on average each
round, then his overall improvement should be no less than that of
the “model" student in lemma 4.2.

Proof. The overall improvement of the model student can be

written as

∆̄ =
N−1∑
t=1

γ (1 − γ )t−1 (1 − η̄0) =
(
1 − (1 − γ )N−1

)
(1 − η0).

Let ω1,ω2, . . . ,ωN−1 ∈ (−∞, 1) be each round of bonus credits

received by the student S, whose average is ω = 1

N−1

∑N−1

t=1
ωt .

And let κt =
ηt−ηt−1

η̃t−1−ηt−1

∈ (−∞, 1/γ ), t ∈ [N − 1] be the student

real improvement ratio, whose average κ ≥ ω since by definition

ωt =



1, κt > 1

κt , κt ≤ 1

. The student S’s overall improvement is

∆ =

N−1∑
t=1

κtγ *
,

t−1∏
i=1

(1 − κiγ )+
-
(1 − η0)

=
*.
,
1 −

N−1∏
t=1

(1 − κtγ )
+/
-
· (1 − η0)

≥
(
1 − (1 − κγ )N−1

)
· (1 − η0)

≥
(
1 − (1 − ωγ )N−1

)
· (1 − η0)

The second last step is because of the AM-GM inequality,

*.
,

N−1∏
t=1

(1 − κtγ )
+/
-

1

(N−1)

≤

∑N−1

t=1
(1 − κtγ )

N − 1

= 1 − κγ

where the equality holds when κ1 = · · · = κN−1 = ω1 = · · · =

ωN−1 = ω. According to lemma 4.2, ∆ ≥ ω∆̄ in this case. Therefore,

we conclude that S’s overall improvement is at least ω∆̄. □

In other words, theorem 4.3 indicates a student earning final

bonus r = (N − 1) ·ω guarantees a teacher’s reward RT ≥ η0 +ω∆̄.
It also indicates the fact that the only way to earn the full bonus

(ω = 1) is to learn at least as well as the model student. If a worker
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(a) Spammer
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(b) Weak Learner
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(c) Median Learner
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(d) Strong Learner

Figure 4: The dynamics of learning and teaching for different worker behavior when γ = 0.7.

is dishonest, his expected overall improvement is zero. Thus he will

earn no bonus other than basic payment from the tasks. That being

said, rationally learning becomes the student’s optimal policy to

achieve the Stackelberg equilibrium in the pedagogical game.

5 EXPERIMENTS
We conduct pedagogical crowdsourcing experiments on various

simulated crowd workers for an interesting cognitive task, “ROSA"
1

game, in order to observe the dynamics of teaching and learning, ex-

plore the effects of different improvement ratios, and verify fairness

and value-alignment properties of the pedagogical crowdsourcing.

5.1 Experimental Setup
The goal of our cognitive task is to make crowd workers label

sampled graphics to identify whether they are “ROSA". This binary

classification is not trivial for the crowd workers because the target

concept might be unclear at the beginning. Therefore, proficiency

issue would be critical.

Task Description (“ROSA") There is a large dataset containing

graphics of different colors, shapes and border styles. The crowd

workers are required to label a total of 75 instances to indicate

whether they are “ROSA" or not in N = 5 rounds, i.e. k = 15

questions each round.

The feature spaceZ includes all the combinations of:

• colors (5): blue, red, yellow, green, pink.
• shapes (3): triangle, square, circle.
• border stype (2): real line, dotted line.

Therefore, the feature space size is |Z| = 5×3×2 = 30. The hypothe-

sis space contains all the hypotheses which associate with single at-

tributes of the graphics, i.e.H = {h
blue
,h

red
,h

yellow
,hgreen,hpink,

htri,hsqr,hcir,hreal,hdot}. For example, h
dot

(·) assign +1 to all the

instances with dotted border, and assign 0 to all the instances with-

out dotted border (they should be real lined border in our settings).

1
In Spanish, word “rosa" means the color pink. We teach the workers who may not

know this concept.

The target concept “ROSA" means “pink" (h∗ = h
pink

), which is not

necessarily clear to all the crowd workers. A small subset X con-

taining 50 instances is randomly sampled and labeled by h
pink

(·)
as the ground truth set G.

Worker Behavior. We observe workers with different learnabil-

ity, as well as the dishonest “spammer". The honest worker will

Beyasianly learn from teaching examples as we defined in defini-

tion 3.5. A stronger learner has larger α in the noise-tolerant likeli-

hood function. In our experimental setting, αstrong = 3,α
median

=

1.2,α
weak

= 0.4. The dishonest worker updates his belief randomly,

which is for illustrating how the integrity issue is addressed in the

pedagogical game.

Worker Population. We also conduct the experiment on four

worker populations who have different initial belief. Two know

what “ROSA" means and have relatively high initial performance

levels 0.808 and 0.904 , and the other two are the typical inexpert

workers who perform only at levels 0.546 and 0.714 initially.

Teaching Settings. We test different teaching targets of improve-

ment ratios γ ∈ {0.3, 0.5, 0.7, 0.9}. We set α = 3 for our teaching

algorithm. To avoid the numerical issue when η̃t+1 and η̂t are close,

we set the immediate reward RS =
η̂t+1−η̂t+ϵ
η̃t+1−η̂t+ϵ

when η̂t+1 < η̂t ,

where ϵ = 0.07. We simulate 200 workers with certain initial belief

for each experimental configuration to obtain the following results.

5.2 Results on Simulated Workers
General Analysis on Teaching and Learning Dynamics. Figure 4

reports the dynamics of workers’ performance, teaching targets,

and the system’s estimation as well as the reward gain, and the

number of elicited examples when we set the teaching target as 70%

of the maximum improvement. The curve of the estimated student

performance (the orange dashed line) almost accurately tracks the

temporal changes in the real performance for different workers

with acceptable standard errors. As the teaching progresses, the

performance of honest workers goes higher, and they require fewer
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Figure 5: The final bonus and number of examples for different worker behavior when γ ∈ {0.3, 0.5, 0.7, 0.9}.
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Figure 6: The dynamics of learning and teaching, as well as final bonus and number of examples for workers with different
initial performance η ∈ {0.546, 0.714, 0.808, 0.904}, when the target improvement ratio is γ = 0.7.

and fewer examples. Even for weak learners, their final performance

is close to that of the model student. The dishonest spammers, who

require more examples, gain almost no reward each round.

Effects of Different Teaching Targets. Our simulation on various

levels of teaching targets shows more robust results. As Figure 5

reflects, in any level of teaching targets, the bonus and the number of

examples are both ranked by the worker’s learnability. The stronger

the learnability of the worker, the more bonus he will gain and the

fewer teaching examples are required. The results also show the

bonus disparity between honest workers and dishonest workers

becomes larger as the level of teaching target rises.

Effects of Different Priors. We observe the framework for crowd

workers who have different priors. Figure 6 (a) depicts the learning

dynamics of median learnability workers with different initial pro-

ficiency to the task. They all earn competitive bonuses in this fair

crowdsourcing and reach very good final performance. As Figure 6

(b) shows, there is no obvious divergence on bonus among honest

workers with different initial expertise in general, as long as they

put in similar effort to learn in the pedagogical crowdsourcing. For

weak learners, having low initial expertise elicits more teaching

from the system, therefore they displayed effort is a bit higher.

However, for those dishonest workers who initially show strong

expertise, the final bonus will be very low since they don’t make

contributions compatible with their competency. Fewer examples

are needed for workers who have higher initial performance.

6 CONCLUSION & FUTUREWORK
In this paper, we propose a novel interactive teaching framework of

crowdsourcing to mitigate the integrity and proficiency issues to im-

prove the crowd workers’ reliability. We formulate the interactions

between the annotation system and the crowd workers as an incen-

tivized pedagogical process between the teacher and the students.

The system is able to infer the workers’ belief from their current

answers, incentive them with improvement-contingent bonuses,

and select near-optimal examples for instruction. An efficient algo-

rithm is developed for the annotation system to select examples,

even when a worker’s belief is unidentifiable. We further show that

our framework ensures fair payments to crowd workers regardless

of their initial priors and facilitates value-alignment between the

task requester and the crowd workers.

Our work hopes to inspire future research to continue exploring

pedagogical crowdsourcing with combining various machine teach-

ing approaches and incentive mechanisms to improve crowd work-

ers reliability. Current experiments on simulated workers demon-

strate the effectiveness and robustness of our approach and suggest

its applicability to real-world crowdsourcing tasks. We expect to

conduct real deployment and human evaluation in the future.
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