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Abstract

This research project studies a novel online decision-making problem of choosing the correct
action each round given access to experts that are knowledgeable, rational, and truthful, rather
than arbitrary. We ask, in this setting, whether we can surpass the best expert using voting-based
algorithms when the experts provide additional information along with their votes. We first show
that we can reduce the number of mistakes using the confidence reported by each expert, and
rival the performance of the best expert using a weight multiplication algorithm. However, the
confidence reported by each expert is insufficient for recovering the correct action, so in order to
surpass the best expert, we need more informative cues from these experts to recover the correct
action. The experts cannot individually make use of these cues. We show that we can surpass the
best expert by having experts provide their predictions of the vote distribution of other experts.
We show that with high probability, the correct answer is the one that is “surprisingly popular”
relative to their predictions. We then propose an online learning algorithm incorporating this
“surprisingly popular” voting strategy, and show that it significantly outperforms the best expert
in simulations with real stock data.

1 Motivation

In lecture, we discussed an algorithm for decision-making under total uncertainty. In this setting, the
decision maker is allowed to ask votes from n experts to make his/her own decision, while the prior
distribution on the set of possible outcomes is unavailable for the decision maker. Without making
any assumptions about those experts, we can surprisingly achieve the following bound:

E[ERR(T )] ≤ (1 + η)err(T ) +
2 lnn

η
, (1)

where η ≤ 1/2 is a fixed learning rate for our multiplicative weights algorithm, E[ERR(T )] is the he
number of mistakes we have made after T rounds, and err(T ) is the number of mistakes made by the
best among n total experts.

This encouraging result indicates that we can make decisions quite comparable to what the best
expert would do, even when we know nothing about the environment and the experts. However, in
a more realistic setting, the environment is not entirely uncertain to those experts (i.e., they have
some knowledge about the environment), and the experts can be expected to be rational and truthful
(i.e., they will truthfully report their prediction based on observed evidence). Can we devise a better
decision-making algorithm in this case? If the experts can provide more information to support or
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explain their votes, e.g., their confidence or their prediction of how other experts will vote, would that
information be helpful to improve our decision-making? In this research project, we will address the
above questions with algorithmic analysis and experimental validation.

2 Problem Statement

2.1 Bayesian Expert Models

We study decision-making with n experts in a more realistic setting, where the experts have knowl-
edge about the environment, and this expert is rational and truthful. To briefly illustrate our
assumptions and general idea, we start with the single stock trading example. The daily price move-
ment of the stock is modeled as a sequence of binary events: {up, down}. Each morning we try to
predict whether the price will go up or down on that trading day.

Now we seek help from n experts, who have some knowledge about the stock that we do not have.
The expert i will give a vote V i ∈ {up, down} based on some evidence it discovered, summarized
by a private signal Si ∈ {s1, . . . , sr}. Here, we assume these signals are categorical, which can be
interpreted as all possible feature combinations that expert can observe, such as news releases on
earnings and profits, introductions of a new product, or accounting errors or scandals. The expert i
will vote V i according to a function V i = V (Si) that maps private signal to votes for prediction up

and down.
Since they are “experts”, we assume they are knowledgeable about the stock, which means that

the joint distribution p(a, sk) is common knowledge to the experts, where a ∈ {up, down}. This is
a reasonable assumption since expert can acquire the joint distribution from historical data or from
their own investment experience. The experts vote differently since they each observe different private
signals each round. Conditional on the true price change to the stock, the experts view the signals
exposed to them as being independent, identically distributed with probabilities p(sk|up) according to
the knowledge they all have. However, in our online learning setting, the experts receive private signal
s ∼ p̃i(·|a), where p̃i(·|a) := normalize(p(·|a) · (1 + i(·))) and i ∼ Nr(0, ) is some expert-dependent
noise with Ei[i] = 0. Therefore, some experts may have more accurate signals about the environment
than others do.

We consider n rational and truthful experts in our study, which assumes that they are Bayesian
and that the expert i votes accordingly to the maximum of the posterior V (Si) = maxa∈{up|down} p(a|Si).
The confidence of the expert i receiving signal sk and voting for a is p(a|sk). The output of our on-

line decision-making algorithm at round t is made based on their votes, f (t)(V
(t)
1 , . . . , V

(t)
n ), or other

auxiliary information, f (t)(V
(t)
1 , I

(t)
1 , . . . , V

(t)
n , I

(t)
n ).

The above setting can be easily extended to scenarios with multiple choices of actions. Suppose
there are m possible actions {a1, . . . , am} each round, and the payoffs of taking these actions are
unknown. Let a∗ be the action with the highest payoff, and our goal is to find this best action a∗
based on the expert votes V i. The experts know the joint probability model p(sk, aℓ) about the
environment, but they do not know which aℓ is the a∗. They will observe the private signal sk as the
evidence, and then give a vote accordingly to the maximum of the ideal posterior p(aℓ|sk). Our final
decision is made based on their votes or any other auxiliary information they can provide.

2.2 Research Questions

The original weighted majority algorithm guarantees an upper bound on the number of mistakes.
Even for irrational and untruthful experts without any knowledge about the environment, we can
perform quite compatible to the best expert can do. Now knowing that our experts are all “good”,
can we outperform this baseline? If even the best expert often votes for the wrong decision, can we
do better than the best expert? We break our research goal into the following specific questions:
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• The best expert (could be one with the smallest i1) can make mistakes in our model since its
votes depend on signals sk it received. What is the expected number of mistakes that the best
expert in our model will make after T rounds? Can the original weighted majority algorithm
perform better than the best expert? What is the expected number of mistakes?

• If experts can also give their confidence p(aℓ|Si = sk) about their votes, can we incorporate this
information with the multiplicative weight algorithm (e.g., also weighted by their confidence),
to make fewer mistakes than the normal majority voting? Can it outperform the best expert?
What is the expected number of mistakes after T rounds?

• If experts can also give their predictions about the distribution of other experts’ votes, based
on their private signal, p(V −i

pred = aj |Si = sk), would that helpful? Can we incorporate this
information with some online learning algorithm, to outperform the best expert? What is the
expected number of mistakes after T steps in this case?

This online learning setup is novel and there is little similar literature to our knowledge. However,
we tried our best to delve into these questions. For the first two questions, we expect the answers
are negative since experts confidence is intuitively inconclusive. For the third questions, the intuition
is that the “correct” decision will be more popular than their prediction in our assumed setting.
We expect to outperform the best expert with this additional information successfully. We rigorously
formulate these three cases, mathematically prove our conjectures, and numerically simulate the online
learning procedures in this project.

3 Main Theory

We start by introducing a few notations frequently used in this paper, and clearly state the assumptions
that make our discussion meaningful and technically friendly. Our main theory consists of three
parts. In the first parts, we will discuss the property of these n Bayesian experts — How the noise
in their observation model influences their performance? What can a single expert do? Also, what
is the expected number of errors the best expert make? As well as the original randomized majority
voting algorithm — How many errors in expectation this algorithm makes? Can we beat the best
expert using majority voting with weight update? In the second part, we study the performance
of a confidence majority voting algorithm, in which we allow the experts not only to vote but also
report their confidence, i.e., the posterior probabilities they use to decide their votes. We will show
how the provided confidence could be useful information to improve our decision compare to vanilla
majority voting, and discuss whether we can beat the best expert, using confidence and learning, in
terms of expected number of mistakes. In the last part, we investigate a simple method, surprisingly
popular algorithm, in which the experts not only vote but also provide their prediction on other
people’s votes. This method exhibits potential ability to outperform the best expert, based on a few
reasonable assumptions, and we will show the reason why. Combined with a sensible weight update
scheme, we devise an online “surprisingly popular” algorithm which stably beats the best expert in
terms of the total number of mistakes.

Terminology

• n, number of experts; T , total number of rounds.

• A = {a1, . . . , am} is the action space. Each round, we are supposed to take one actions based
on actions the n experts, which are called votes. The vote of the i-th expert is described as a
random variable V i, which takes value in A. But sometimes for clearance, we use redundant
notations {v1, . . . , vm} to indicate the value of experts’ votes of {a1, . . . , am}, correspondingly.
In our setting, there is only one action aℓ∗ is correct each round, and we denote other actions as
a−ℓ∗ . Our goal is to maximize the number of rounds where we take the correct actions.

3



• S = {s1, . . . , sr} is the state space or the set of private signals. Each round, each expert receives
a private signal sk conditioned on the correct action aℓ∗ in the current round. Experts make
their votes for the correct action based on their received signals each round, respectively.

• p(aℓ, sk) is the probabilistic model of the environment describing the joint distribution of current
correct action and rendered signal. Furthermore,

– p(aℓ) =


k p(aℓ, sk) denotes the prior distribution of the correct actions, which can be
acquired by estimating from historical data in a realistic settings.

– pi(sk|aℓ) = p(aℓ, sk)/p(aℓ) denotes the probability that the i-th expert receives signal sk in
a world where aℓ is the current correct action, according to the probabilistic model of the
environment. Since it is the same across all experts, we simply write this value as p(sk|aℓ).

– pi(aℓ|sk) = pi(sk|aℓ)p(aℓ)
ℓ′ pi(sk|a′

ℓ)p(a
′
ℓ)

denotes the posterior distribution of the event that action aℓ
is correct given current private signal sk for the i-the expert, based on the probabilistic
model of the environment. When the current vote of the i-th expert is vℓ, pi(aℓ|sk) is also
called its confidence. We simply note this value as p(aℓ|sk) when i is irrelevant.

– pi(vℓ′ |sk) is the probability that the i-th expert make vote for vℓ′ (aℓ′) given received signal
sk. Since the expert’s decision making according to private signal can be deterministic, in
that case pi(v

′
ℓ|sk) is either 0 or 1.

– pi(vℓ′ |aℓ) =


k pi(vℓ′ |sk)p(sk|aℓ) represents the probability that the i-th expert vote for
vℓ′ when the current correct action is actually aℓ, based on model p(aℓ, sk). Specially, we
use pi(v−ℓ|aℓ) to denote the probability that the i-th expert’s vote is wrong, and pi(vℓ|aℓ)
to denote the correct probability.

– κi =


ℓ pi(v−ℓ|aℓ)p(aℓ) be the probability that the i-th expert makes a wrong vote.

– p−i(vℓ|sk) =


ℓ′ pi(vℓ|aℓ′)p(aℓ′ |sk) denotes the vote distribution of other experts that i-th
expert predicts based on the its own received private signal sk.

• p̃i(sk|aℓ) = p(sk|aℓ)(1+ik)
k′ p(sk′ |aℓ)(1+ik′ )

is the real signaling probability unknown to expert, where i ∼
Nr(0, ) for tiny  is a noise term, which make each experts received signal a bit different from
the common model. We replace pi(sk|aℓ) with p̃i(sk|aℓ) in some of above mentioned terms to
obtain p̃i(aℓ|sk), p̃i(v′ℓ|aℓ), and κ̃i representing real posterior distribution, real vote probability
given action, and real wrong vote probability, respectively. Note that it is not necessary to have
p̃i(v

′
ℓ|sk) and p̃−i(vℓ|sk) since the real signaling probability is unknown to experts for making a

vote or prediction.

Assumptions

• Experts are knowledgable about the environment. It means the probabilistic model p(aℓ, sk) is
common knowledge to every expert. However, the correct action and the real signaling proba-
bility is unknown to any of them.

• Experts are rational. It means they can correctly compute the posterior distribution (confidence)
and the vote distribution of other experts with Bayesian rules based on the common knowledge
p(aℓ, sk) and the private signal sk they receive.

• Experts are truthful. It means that experts honestly report the exact information they have.
As for the voting, in this paper we consider each expert vote for the action with maximal
posterior probability when receiving sk, i.e., V

i = argmaxaℓ
p(aℓ|sk). Therefore, their votes are

deterministic given the signal, pi(vℓ|sk) is either 0 or 1.

• No communication among n experts.
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• Environment is supportive. The confusing signals are less likely to be given to experts, i.e. for any
two signal pi(aℓ|sk) > pi(a−ℓ|sk) and pi(aℓ|s′k) < pi(a−ℓ|s′k), we should have p(sk|aℓ) > p(s′k|aℓ).
This actually assumption implies in expectation majority experts are correct.

• For simplification, we assume m = 2 for the most part of this project paper. The generalization
from two to more should be straightforward and we leave it as future work.

3.1 Majority Voting with Bayesian Experts

We begin with an analysis of the randomized majority voting under our problem setup. The algorithm
is given in Algorithm 1. We will first prove Lemmas 1 and 2.

Lemma 1. κ < 1/2, i.e., wrong vote probability is less than half. Bayesian experts with perfect
information make more correct votes than wrong votes in expectation.

Proof. By definition, κ =


ℓ pi(v−ℓ|aℓ)p(aℓ), we have 1 − κ = 1 −


ℓ pi(v−ℓ|aℓ)p(aℓ) =


ℓ p(aℓ) −
ℓ pi(v−ℓ|aℓ)p(aℓ) =


ℓ(1 − pi(v−ℓ|aℓ))p(aℓ) =


ℓ(pi(vℓ|aℓ))p(aℓ), since pi(vℓ|aℓ) + pi(v−ℓ|aℓ) = 1

hold for all ℓ ∈ {1, . . . ,m}. Thus, if we can prove κ < 1 − κ, which implies


ℓ pi(v−ℓ|aℓ)p(aℓ) <
ℓ pi(vℓ|aℓ)p(aℓ), we prove k < 1/2.
A useful observation is that based on our assumption, we have pi(v−ℓ|aℓ) < pi(vℓ|aℓ) for all

ℓ ∈ {1, . . . ,m}, i.e., the probability of expert i voting correctly is higher than voting wrongly (sounds
reasonable for an “expert”). To show this, we write

pi(v−ℓ|aℓ) =


1≤k≤r

pi(vℓ|sk) · p(sk|aℓ)

=


1≤k≤r

χ{vℓ = argmax
aℓ′

(pi(aℓ′ |sk)} · p(sk|aℓ)

=


1≤k≤r

χ{p(aℓ|sk) > p(a−ℓ|sk)} · p(sk|aℓ)

(∗) <


1≤k≤r

χ{p(aℓ|sk) < p(a−ℓ|sk)} · p(sk|aℓ)

=


1≤k≤r

pi(v−ℓ|sk) · p(sk|aℓ)

= pi(vℓ|aℓ)

where χ{·} = 1 if the event in {} is true, otherwise 0. The step (∗) above holds, because con-
sider two signals sk and sk′ such that p(aℓ|sk) > p(a−ℓ|sk) and p(aℓ|sk′) < p(a−ℓ|sk′), according to
friendly environment assumption, which states the confusing signal is less likely to be received, we
have p(sk|aℓ) < p(s′k|aℓ). It completes our proof.

Lemma 2. (1− 2)κ ≤ Ei [κ̃i] ≤ (1 + 2)κ. The real expected vote error rate of experts is very close
to its modeled error rate, only with a small distortion.

Proof. By definition, using the fact that


k′ pi(sk′ |aℓ) = 1 for any ℓ:

κ̃ =


ℓ

p̃i(v−ℓ|aℓ)p(aℓ) =


ℓ



k

pi(v−ℓ|sk)p̃i(sk|aℓ)p(aℓ)

=


ℓ

p(aℓ)


k

pi(v−ℓ|sk)
pi(sk|aℓ)(1 + ik)
k′ pi(s′k|aℓ)(1 + ik′)

=


ℓ

p(aℓ)


k

pi(v−ℓ|sk)pi(sk|aℓ) ·
(1 + ik)

1 +


k′ pi(sk′ |aℓ)ik′
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Expanding in Taylor series we know fact that 1 −


k′ pi(sk′ |aℓ)ik′ ≤ 1/(1 +


k′ pi(sk′ |aℓ)ik′) ≤
1−


k′ pi(sk′ |aℓ)ik′ + (


k′ pi(sk′ |aℓ)ik′)2 ⇒

Ei


1 + ik

1 +


k′ pi(s′k|aℓ)


≥ Ei


(1 + ik)


1−



k′

pi(sk′ |aℓ)ik′


≥ 1− 2 (2)

Ei


1 + ik

1 +


k′ pi(s′k|aℓ)


≤ Ei



(1 + ik)



1−


k′

pi(sk′ |aℓ)ik′ +




k′

pi(sk′ |aℓ)ik′

2






 ≤ 1 + 2

(3)
where we derive inequalities 2 and 3 based on some properties of i ∼ Nr(0, ), including Ei [ik] =
0,Ei [

2
ik] = V ar(ik) + E2[ik] = 2, Ei [ikik′ ] = 0 for k′ ∕= k. Thus we have shown that (1− 2)κ ≤

Ei [κ̃i] ≤ (1 + 2)κ, which means the real expected wrongly voting probability is very close to its the
wrongly voting probability in the common ideal model, only with a small (1 ± 2) distortion. This
lemma implies that in many cases we can analyze the expert’s behavior just simply using noise-free
model then bounded with some small distortion.

Note that Lemmas 1 and 2 do not imply the majority is always correct. There is still a chance for
more than half of experts to make wrong votes. Next, we prove Theorem 1.

Theorem 1. The asymptotically upper and lower bound for the expected number of mistakes that the
best expert makes in T round are

κ(1− 2)T −

(T/2) lnn ≤ E


min

1≤i≤n
err

(T )
i


≤ κ(1 + 2)T −


k(1− 2)T lnn

Proof. Each round experts’ vote are i.i.d., and the κ is wrongly voting probability in the noise-

free model. Therefore, err
(T)
i is roughly a summation of T random variables drawn from binomial

distribution Bin(k, T ). When T is large, according to the law of large number, we can use the Gaussian

distribution N(kT,

k(1− k)T ) to approximate the distribution of err

(T)
i . Hence, asymptotically we

have

E

min

1≤i≤n
err

(T )
i


≍ κT −


κ(1− κ)T ·


2 log n

Using the Lemma 2 we derive tight asymptotical bounds for the noisy case:

E

min

1≤i≤n
err

(T )
i


≥ κ(1− 2)T −


2κ̃(1− κ̃) ·


T log n ≥ κ(1− 2)T −


(T/2) lnn,

and also use Lemma 1 as well we have

E

min

1≤i≤n
err

(T )
i


≤ κ(1 + 2)T −


2κ̃(1− κ̃) ·


T log n ≥ κ(1 + 2)T −


(1 + )2κT lnn,

We gives our desired bound for the expected number of mistakes that the best expert makes in T
rounds. Note that it is roughly κT −O(

√
kT log n).

The majority voting algorithm makes the decision with a probability based on the experts’ votes.
For instance, if there 4 out of 10 experts vote for up, 6 out of 10 experts vote for down in some round,
the probability that our majority voting algorithm choose up is 0.4, and 0.6 for down. The performance
of this algorithm is shown in Theorem 2.
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Algorithm 1 Weighted Majority Voting Algorithm with Bayesian Experts

Set a learning rate η ≤ 1/2 (≈

(lnn)/T ).

For each expert i, associate the initial weight w
(0)
i = 1.

1: for round t = 0, . . . , T − 1 do
2: Experts receive private signals {si}1≤i≤n, and make votes {vi}1≤i≤n.
3: Make a decision D(t) with probability based on is the weighted majority of the experts votes.

The weights associated to experts are

w
(t)
1 /Φ(t), . . . , w(t)

n /Φ(t),

where Φ(t) =


i w
(t)
i .

4: For every expert i who vote wrongly, decrease its weight for the next round by multiplying it
by a factor of (1− η):

w
(t+1)
i = (1− η)w

(t)
i

5: end for

Theorem 2. The expected number of mistakes the majority voting algorithm makes is bounded by

κ(1− 2)T ≤ E[ERR(T )
mv ] ≤ κ(1 + 2)T

Proof. The random variable ERR
(T )
mv can be seen as the sum of T random variables i.i.d. with probability

i E[κ̃i]/n to be 1 (indicating our decision is wrong) and 1−


i E[κ̃i]/n to be zero. Use Lemma 2

k(1− 2)T
n(1− 2)κ

n
T ≤ E[ERR(T )

mv ] =


i E[κ̃i]

n
· T ≤ n(1 + 2)κ

n
T = k(1 + 2)T,

which says the performance of majority voting (without learning) is similar to the performance of a
single expert.

From the lecture we know we can improve the majority voting by dynamically adjusting weights
assigns to each expert when averaging their votes. Our decision is made with a probability based on
the weighted average of their votes. This classic online algorithm is demonstrated in Algorithm 1. We
analyze its performance with Bayesian experts in Theorem 3.

Theorem 3. The expected number of mistakes the weighted majority voting algorithm (online learn-
ing) makes is bounded by

(1 + η)(κ(1− 2)T −

(T/2) lnn ≤ E[ERR(T )

wmv] ≤ (1 + η)(κ(1 + 2)T −

k(1− 2)T lnn) +

lnn

η
,

where η ≤ 1/2 is the learning rate.

Proof. We can write E[ERR(T )
wmv] =

T−1
t=0

n
i=1 r

(t)
i w̃

(t)
i , where r

(t)
i indicating the mistake the i-th

expert makes in round t, r
(t)
i = 1 with probability κ̃i and otherwise r

(t)
i = 0 with probability 1 − κ̃i

for all t ∈ [T ]. In a compact vectorized form, we write E[ERR(T )
wmv] =

T−1
t=0 r(t) · w̃(t).
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Similar to the proof we saw in class, we investigate the partition function how Φ changes as
algorithm runs.

Φ(T ) = Φ(T−1)(1− η · r(T−1) · w̃(T−1))

≤ Φ(T−1) exp

−η · r(T−1) · w̃(T−1)



≤
T−1

t=0

Φ(0) exp

−η · r(t) · w̃(t)



≤ n · exp

−η ·

T−1

t=0

r(t) · w̃(t)



Since the final partition function Φ(T ) is at least the final weight of arbitrary expert i, then we have

(1− η)
T−1

t=0 r
(t)
i ≤ Φ(T ) ≤ n · exp


−η ·

T−1

t=0

r(t) · w̃(t)



By taking ln on both side we get err
(T )
i log(1 − η) ≤ err

(T )
i η(1 + η) ≤ log n − η · E[ERR(T)wmv], com-

bining with Theorem 1 which implies E[ERR(T )
wmv] ≤ (1 + η)err

(T )
i + lnn

η ≤ (1 + η)(κ(1 + 2)T −
k(1− 2)T lnn) + lnn

η

Note that when taking η ≈

(lnn)/κT , we have E[ERR(T )

wmv] ≤ κ(1+ 2)T −O(
√
kT lnn), which is

of the same order as the best expert in Theorem 1, and therefore is better than the majority voting
algorithm without learning.

As for the lower bound, since (1− x) ≤ e−tx for t ≥ −(ln(1− x))/x for x < 1, we have

Φ(T ) = Φ(T−1)(1− η · r(T−1) · w̃(T−1))

≥ Φ(T−1) exp


− ln(1− η)

η


−η · r(T−1) · w̃(T−1)



≥
T−1

t=0

Φ(0) exp

ln(1− η) · r(t) · w̃(t)



≥ n · exp

ln(1− η) ·

T−1

t=0

r(t) · w̃(t)



Because the final partition function Φ(T ) is at most n times the final weight of the best expert i
(who masks fewest mistakes), then we have

n · (1− η)err
(T )
best ≥ Φ(T ) ≥ n · exp


ln(1− η) ·

T−1

t=0

r(t) · w̃(t)



Thus by taking ln on both side, we have E[ERR(T )
wmv] ≥ err

(T )
best ≥ (1 + η)(κ(1 − 2)T −


(T/2) lnn.

This indicates that we cannot use weighted majority voting algorithm to surpass the best expert!

Remark 1. The weighted majority voting algorithm is better than the one without learning, but it
can not surpass the best expert. (This statement has been shown in the proof of Theorem 3).
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Algorithm 2 Confident Majority Voting Algorithm with Bayesian Experts

Set a learning rate η ≤ 1/2 (≈

(lnn)/T ).

For each expert i, associate the initial weight w
(0)
i = 1.

1: for round t = 0, . . . , T − 1 do
2: Experts receive private signals {si}1≤i≤n, make votes {vi}1≤i≤n, and report their confidence

of voted actions {ci := pi(a
i|si)}1≤i≤n.

3: Make a decision D(t) with probability based on is the confidence weighted majority of the
experts votes. The weights associated to experts are

c1w
(t)
1 /Φ(t), . . . , cnw

(t)
n /Φ(t),

where Φ(t) =


i ciw
(t)
i .

4: For every expert i who vote wrongly, decrease its weight for the next round by multiplying it
by a factor of (1− η):

w
(t+1)
i = (1− η)w

(t)
i

5: end for

3.2 Rival the Best Expert with Confidence

In section 3.1, we obtain a negative result that even though online learning can improve the randomized
majority voting, it cannot beat the best expert. In this and the next section, we try to let experts to
provide additional information, to see whether we can use this extra information to surpass the best
expert.

What is possible additional information that we can utilize? Confidence that experts feel about
their current votes could be one option. Each round, we allow the experts to report their confidence,
i.e., the posterior probability of the correct action after observing the signal, along with their votes.
Our final decision is based on the average of their votes weighted by their confidence.

How good is this confident majority voting strategy?

Theorem 4. The expected number of mistakes the majority voting with confidence algorithm makes
is no greater than κ(1 + 2)T −O(

√
κT lnn)

Combined with online learning, we can modify the randomized majority voting by multiplying
reported confidence as part of weights each round. The complete algorithm of this confident majority
voting algorithm is illustrated in Algorithm 2. We have a similar bound for this algorithm

Theorem 5. The expected number of mistakes the weighted majority voting with confidence algorithm
(online learning) makes is no greater than κ(1 + 2)T −O(

√
κT lnn)

We only show some intuition to prove Theorem 4 and 5 here. The confident majority voting can
be seen as randomized majority voting with some ”good” initial weights, Therefore it should be better
than vanilla majority voting without learning. However, since partition function changes following a
similar claim in the proof of Theorem 3, confident majority voting can only change the additive error
lnn/η with a constant. Therefore the bound is still κ(1 + 2)T −O(

√
κT lnn).

The confidence looks not very helpful, but why? Lemma 3 gives a potential reason that the
confidence actually is not informative. Knowing confidence cannot help us know more about the
correct action.

Lemma 3. The confidence is not informative. The same confidence can be generated in some proba-
bilistic model for an arbitrarily selected action.
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Algorithm 3 Weighted Surprisingly Popular Voting Algorithm with Bayesian Experts

Set a small learning rate η.

For each expert i, associate the initial weight w
(0)
i = 1.

1: for round t = 0, . . . , T − 1 do
2: Experts receive private signals {si}1≤i≤n, make votes {vi}1≤i≤n, and report their prediction

of the distribution of other experts’ vote {di(·) := p−i(·|si)}1≤i≤n.
3: Make a decision D(t) based on difference between the real experts votes and the weighed

predicted vote distribution:

d̄
(t)
i (aℓ) =



i

di(aℓ)w
(t)
i /Φ(t),

where Φ(t) =


i w
(t)
i . If vℓ’s frequency in {vi}1≤i≤n is greater than d̄(t)(aℓ), then D(t) = vℓ.

4: For every expert i who predicts d(aℓ∗) < freq(vℓ∗), increase its weight for the next round by
adding it with the learning constant η:

w
(t+1)
i = w

(t)
i + η

5: end for

Proof. Even when knowing p(sk|aℓ) and p(aℓ|sk) for all k ∈ {1, . . . , r}, we can construct a different
joint distribution,

q(sk, aℓ) = p(sk|aℓ∗)

p(sk′ |aℓ∗)
p(aℓ|sk′)

−1

which has q(sk|aℓ) = p(sk|aℓ) and q(aℓ|sk) = p(aℓ|sk). Since aℓ can be arbitrarily action, the same
confidence can be generated in some probabilistic model for an arbitrarily selected action.

Remark 2. The majority voting algorithm with confidence is better than vanilla majority voting, and
rival to the best expert in terms of the number of errors.

3.3 Surpass the Best Expert with Predicted Vote Distribution

Now, we will analyze the “surprisingly popular” voting algorithm, in which experts provide their
predictions of the vote distributions for other experts. The algorithm is shown in Algorithm 3. We
begin by proving Lemmas 4 and 5 below.

Lemma 4. pi(vℓ|aℓ) > pi(vℓ|a−ℓ). The probability that the expert vote for the correct action is larger
than the probability they wrongly vote for the same action in a counterfactual world.

Proof. We show that actual votes for the correct action exceed counterfactual votes for the correct
action,

pi(vℓ|aℓ)
pi(vℓ|a−ℓ)

=
pi(aℓ|vℓ)p(a−ℓ)

pi(a−ℓ|vℓ)p(aℓ)
=

pi(aℓ|vℓ)
1− pi(aℓ|vℓ)

· 1− p(aℓ)

p(aℓ)
,

where pi(aℓ|vℓ) is the probability that when the i-th expert votes for aell and the correct action is indeed
aℓ. Note that pi(aℓ|vℓ) > pi(aℓ|vℓ) · pi(vℓ) + pi(aℓ|v−ℓ) · pi(v−ℓ) = p(aℓ) since pi(aℓ|vℓ) > pi(aℓ|v−ℓ),
which can be justified by

pi(aℓ|vℓ) =


k

p(aℓ|sk)pi(sk|vℓ) >
1

2
>



k

p(aℓ|sk)pi(sk|v−ℓ)pi(aℓ|v−ℓ),

as the i-th expert deterministically votes for some a such that pi(a|s) > 1
2 (It is the one with max

posterior probability, and there are two possible actions as we assume. If there are m > 2 actions, we
simply modify 1/2 to 1/m. The statement still holds.) Hence, we complete the proof for pi(vℓ|aℓ) >
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pi(vℓ|a−ℓ), the correct votes should be more popular in the real world than some counterfactual
world.

Lemma 5 (The correctness of SP voting). p(vℓ|aℓ) ≥ p−i(vℓ|sk). The probability of correct voting is
underestimated each expert no matter which sk it receives.

Proof. The expert receiving signal sk estimate expected votes distribution of other expert by marginal-
izing across the two possible worlds where aℓ is and is not the correct action

p−i(vℓ|sk) = pi(vℓ|aℓ)pi(aℓ|sk) + pi(vℓ|a−ℓ)pi(aℓ|sk)

According to Lemma 4, the probability of actual vote for the correct action is larger than that in
a counterfactual world, pi(vℓ|aℓ) > pi(vℓ|a−ℓ), we have pi(vℓ|aℓ) ≥ p−i(vℓ|sk), with strict inequality
unless pi(aℓ|sℓ) = 1. Because weak inequality holds for all signals, and is strict for some, the average
predicted vote will be strictly underestimated.

We now bound the expected number of mistakes made by the algorithm in Theorem 6.

Theorem 6. The expected number of mistakes the “surprisingly popular” voting algorithm makes is
bounded by

E[ERR(T )
sp ] ≤ (1 + 2)2 · κ2 · T,

when there are enough experts.

Proof. Because of Lemma 2, we can just think the total number of wrong votes experts makes each
round as a random variable U drawn from binomial distribution Bin(κ, n). Therefore, in expectation,
there are κn wrong votes each round. When using the “surprisingly popular” voting algorithm, let
ρ =


ℓ p−i(v−ℓ|aℓ)p(aℓ). By Lemma 5 we know κ < ρ if U < n · p−i(v−ℓ|aℓ) then we will obtain the

correct answer. The probability that U > p−i(v−ℓ|aℓ) is very small according to the Chernoff bound

Pr

U >

ρ

κ
κn


≤ exp


−

ρ
κ − 1

2
κn

3



Hence, the expected number of mistakes the “surprisingly popular” voting algorithm makes is

E[ERR(T )
sp ] = T · Pr


U >

ρ

κ
κn


≤ T · exp


−

ρ
κ − 1

2
(1− 2) · κn
3



Now we bound the ratio of ρ to κ.

ρ =


ℓ

p−i(v−ℓ|aℓ)p(aℓ)

=


ℓ

p(aℓ)


k

p−i(v−ℓ|sk)pi(sk|aℓ)

=


ℓ

p(aℓ)


k

pi(sk|aℓ)


ℓ′

pi(v−ℓ|aℓ′)pi(aℓ′ |sk)

=


ℓ

p(aℓ)


k

pi(sk|aℓ)


ℓ′

[pi(v−ℓ|aℓ′)p(aℓ′)] pi(aℓ′ |sk)/p(aℓ′)

Therefore, ρ should be some interpolation between κ and 1− κ. Specially, when

ρ ≥ κ+

(6κ ln 1/κ)/n,

holds, we will have

E[ERR(T )
sp ] ≤ T · exp


−6 ln 1/κ̃

3


≤ (1 + 2)2 · κ2T.
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In this case we have E[ERR(T )
sp ] << κ(1 + 2)T − O(

√
κT lnn) for large T , since the increasing rate

of mistakes for “surprisingly popular” algorithm, κ2, is much lower than that of the best expert, κ.
Therefore, the “surprisingly popular” voting algorithm can significantly surpass the best expert! Note
that this condition commonly holds when we have enough number of experts.

Based on this simple “surprisingly popular” voting algorithm, we design an online learning al-
gorithm which further improves the performance. This “surprisingly popular” voting with online
learning algorithm is demonstrated in 3. The basic intuition of this learning algorithm is that, as
usual, we wish to assign different weights to different experts, but now we will weight more on the
experts who tend to underestimate the correct vote, so that ensure the correctness of our “surprisingly
popular” voting strategy. Our simulation indicates the learning version “surprisingly popular” voting
algorithm can outperform the one without learning, by slightly increasing the accuracy each round.
We leave the bound for this “surprisingly popular” voting with learning algorithm as future work.

4 Experiments

We conducted experimental validation of our theoretical analysis on the real-world S&P stock data
from Homework 4. We implemented all of the algorithms discussed in c, ran them on the stock data,
and compared their performance with that of the best expert. We discuss below our results for various
setups.

4.1 Algorithms Implemented

We implemented Algorithms 1, 2, and 3 described in Section 3. We also implemented variations of all
three algorithms without the learning component, in which the weights are kept the same the entire
time. These six algorithms are compared with the performance of the best expert.
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Figure 1: We show the number of mistakes made by each strategy over the span of 1000 days.
Empirically, the “surprisingly popular” strategies made far fewer mistakes than the best expert. Also
note that the near linearity of the plot is in agreement with our theoretical bound on the number of
mistakes. The Best viewed in color.
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Figure 2: We show the accuracies achieved by each strategy over the 1000 day period. For clarity, we
smooth the plots using an exponential moving average with a coefficient of 0.95. Best viewed in color.

4.2 Number of Mistakes

We run each algorithm on the stock data for 1000 days, and each day, we count the cumulative number
of mistakes made by each algorithm. This is shown in Figure 1. We note that the near linearity of
the plot is in agreement with the asymptotic bounds we derived in Sections 3.1, 3.2, and 3.3, for the
number mistakes made by each algorithm.

4.3 Accuracy per Day

We measure the accuracy of each strategy for each day, where the accuracy for a given day and
strategy is the value of the posterior for the correct action for that day. Alternatively, this is simply
the probability of voting correctly for that day when using a particular strategy. The results are shown
in Figure 2. Note that we used an exponential moving average to smooth the curve for more clarity.
We observe that the “surprisingly popular” vote strategy outperforms the best expert as well as the
other baselines by a large margin.

4.4 Returns

We consider a trading strategy in which we decide whether to buy or sell on each day based on whether
we predict the stock will go up or down. When we buy, we convert all of our cash to stock, and when
we sell, we convert all of our stock to cash. We assume no fees for our transactions. We apply this
trading strategy for all six of the algorithms we test, as well as for the best expert, and show the
results in Figure 3. We compute the return of a strategy as the ratio between the final wealth and
the initial wealth. The algorithms for “surprisingly popular” vote outperform the other algorithms as
well as the best expert by a large margin.

5 Conclusion

In this project, we modified the weighted majority voting algorithm from lecture to see if, given certain
assumptions about the experts and certain additional information from the experts, we can do better
than the best expert. We considered the special scenario where we have knowledgeable, rational,
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Figure 3: We show the amount of return for each strategy, expressed as the ratio between the initial
wealth and the final wealth after 1000 days. The “surprisingly popular” strategies, both with and
without online learning, outperform the best expert by a large margin.

and truthful experts, who provide not just their vote, but also an additional piece of information.
Under this scenario, we addressed three research questions, each corresponding to a type of experts
voting algorithm. We established that (1) randomized majority voting cannot surpass the best expert,
(2) confidence majority voting rivals the best expert, and (3) “surprisingly popular” voting is able to
outperform the best expert by a large margin. We then implement these algorithms and experimentally
validate our theoretical findings on real-world S&P stock data.
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