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Abstract

In this work, we tackle the problem of real-time vir-
tual reality streaming in low-bandwidth network con-
ditions. In low-bandwidth settings, VR streaming
faces an inherent trade-off between responsiveness
and image resolution, both of which are crucial to a
high quality user experience. To overcome this trade-
off, we propose to send low-resolution frames over
the network and then apply neural super-resolution
on the client to generate high-resolution frames. We
implement a client/server setup for a 3D virtual envi-
ronment as a proof of concept, and demonstrate that
even under low-bandwidth (12 Mbps) network con-
ditions, our system is still able to deliver a fast, re-
sponsive, and high-resolution VR experience to the
end user.

1 Introduction

Recently, virtual reality (VR) has been gaining pop-
ularity as a technology of human-machine interac-
tion. By simulating virtual scenes in a 3D space sim-
ilar to that of real physical environment, virtual real-
ity is revolutionizing the way we experience gaming,
movies, specialized training [6], and other immersive
applications.

In this work, we are interested in real-time virtual
reality streaming in low-bandwidth network condi-
tions. Streaming of high resolution image frames
in real-time has very heavy bandwidth requirements,
and high bandwidth connections are not always af-
fordable or feasible. This limitation stands as one
of the main technological bottlenecks to real-time
VR streaming. Unfortunately, VR streaming in a
low bandwidth environment is infeasible due to ei-
ther poor latency/throughput or low resolution, both
of which would severely limit the quality of experi-
ence for the end user.

When streaming real-time VR in a low-bandwidth
environment, there is an inherent trade-off between
the responsiveness of the user experience and the res-
olution of the image feed. Attempting to send high-
resolution image frames when there is not enough
network bandwidth results in each frame taking a
very long time to send. This results in high latency
and a very low frame rate for the end user.

Alternatively, we can get around the low-
bandwidth limitation by simply streaming low-
resolution image frames to the end user. Such an
approach does not suffer from poor latency or low
frame rate, but will still result in a worsened user ex-
perience since the frames will be low-resolution and
very grainy.

In this work, we propose a method to enable high
quality, real-time VR experiences in low bandwidth
environments. We focus on maintaining a high qual-
ity of experience for the end user while greatly re-
ducing the bandwidth requirement of the system.
Our approach is to send low-resolution frames from
the server to the client, and then use neural super-
resolution on the client to improve the quality of the
image frames. Low-resolution frames are less band-
width intensive than high resolution frames, and al-
low for low latency and high throughput while they
are being sent to the client. This keeps the VR expe-
rience fast and responsive, both of which are crucial
components of a good user experience.

On the client side, rather than directly showing
low-resolution frames, which would degrade the user
experience, we use a very lightweight neural super-
resolution model to improve the quality of the image
before showing it on the screen. In this way, we are
able to maintain a high quality of experience for the
end user while drastically cutting down on the net-
work bandwidth required by the system.

As a proof of concept, we built a real-time virtual
reality client and server for a 3D photorealistic in-
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Figure 1: An overview of our system design for real-time VR in a low-bandwidth networking environment.
We run a photorealistic 3D virtual environment on the remote VR server, which processes movement
commands from the client and sends compressed, low-resolution frames to the client. The client then
performs neural super-resolution on the received frames to generate high-resolution image frames, which
are then shown to the user. This design allows our system to deliver high quality VR to the end user while
using very little network bandwidth.

door virtual environment, and ran the system under
a simulated low bandwidth network to demonstrate
the effectiveness of our approach. With a connec-
tion between the client and server of only 12 Mbps,
the client is able to navigate inside a high-resolution
(1440x1080) indoor virtual environment resolution
at over 10 frames per second.

We measured the amount of network bandwidth
required by our approach and compared with a base-
line that directly sends high-resolution frames over
the network. Our approach significantly reduces the
network bandwidth required by the system, but does
not sacrifice. Under low-bandwidth network con-
ditions, we are still able to provide an experience
for the end user that is fast, responsive, and high-
resolution.

In the following sections, we will describe our de-
tailed system design in Section 2, present qualitative
and quantitative evaluation of our system in Section
3, describe related work in Section 4, and conclude
in Section 5.

2 Design

We designed and implemented a client/server setup
as a proof-of-concept of our approach. Our sys-

tem is illustrated in Figure 1. We run a photoreal-
istic 3D virtual environment on the remote server,
which maintains the current state of the environment.
The server processes movement commands from the
client and renders low-resolution frames to send back
to the client over the low-bandwidth network. The
client acts as an user-friendly interface between the
end user and the virtual reality engine on the server.
The client also performs neural super-resolution of
the low-resolution frames it receives, allowing it to
present high quality frames to the end user even
though the system is operating in a low-bandwidth
environment. We now proceed to describe each com-
ponent in more detail below.

2.1 Server

The remote VR server is mainly responsible for run-
ning the 3D virtual environment and communicat-
ing with the client. We use the open-source AI2-
THOR [2] framework, which provides a photorealis-
tic 3D virtual environment, complete with a Python
API for interaction with the environment. Please see
Figures 3 or 4 for example screen captures of the 3D
environment as visualized by the client. The environ-
ment consists of 120 3D indoor scenes across four
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different scene types: kitchens, living rooms, bed-
rooms, and bathrooms.

The server periodically receives movement com-
mands from the client, expressing what actions the
user wishes to perform inside the environment. The
user is initially placed into a canonical position and
viewpoint inside a scene, and is able to move in all
four directions and rotate the viewpoint left or right.
The user is also able to freely switch among the 120
different scenes in AI2-THOR.

Whenever the server processes a movement com-
mand from the client and updates the player state, it
will then proceed to send an image frame of the up-
dated 3D environment to the client. In order to over-
come the low-bandwidth constraints of the network,
the server will send a compressed, low-resolution
version of the frame over the network, which the
client will process with super-resolution to maintain
a high quality of experience for the user.

The rendering engine on the server can render
image frames in either low-resolution (480x360) or
high-resolution (1440x1080). As shown in Figure 3,
rendering frames directly in low-resolution results in
lots of image artifacts. In our system, we found that it
worked best to run the VR engine in high-resolution
mode, and then use bilinear interpolation to down-
scale the high-resolution frames to 480x360, as this
resulted in much fewer image artifacts.

Once the image frame has been downscaled to
480x360, we do not send the raw array image data
directly to the client, as the size of an RGB im-
ages can be greatly reduced using JPEG compres-
sion at almost no perceptible cost to image qual-
ity. For example, a 480x360 array image frame is
507 KB, whereas the JPEG compressed version is
only 36 KB, over 14 times smaller. The server thus
uses JPEG to further reduce the bandwidth usage of
our system, compressing the 480x360 downscaled
image frame to a JPEG bytestring before sending the
frame over the network to the client.

2.2 Client

The client is the main interface of our system with
the end user, and could be a real-time VR headset
worn by the user. In our case, as a proof of con-
cept, we implemented a desktop client in which the
user can interact with the 3D AI2-THOR environ-
ment as if he/she was playing a photorealistic com-

puter game. The 3D virtual environment is streamed
in real-time to the client machine, allowing the user
to interact as if the engine was running directly on the
local machine. The most recent frame from the VR
server is displayed on the computer screen, and the
user is able to use keyboard commands to navigate
inside the 3D environment.

The keyboard commands input into the system,
such as move forward or turn right, are sent over the
network to the VR server, where the state of the 3D
environment is update accordingly. The server then
sends a compressed, low-resolution 480x360 image
frame back over the network, reflecting the updated
environment state. The client will then run neural
super-resolution on the received frame to generate
a detailed, high-resolution 1440x1080 frame that is
shown to the end user. We describe the setup and
implementation details of the neural super-resolution
model we used in Section 2.4.

2.3 Low-Bandwidth Network Emulation

In order to test how well our system works in
low-bandwidth network conditions, we used the
mm-link tool from the Mahimahi network emula-
tion tool set to simulate a low-bandwidth connection,
restricting the client-server connection to 12 Mbps.
Once we established the low-bandwidth connection,
we used the speedtest-cli tool to verify that
the connection is indeed 12 Mbps each way. We
then compare and benchmark how our system runs
in various setups with and without network emula-
tion enabled. We show such results in our evaluation
in Section 3.2.

2.4 Neural Super-Resolution

In a low-bandwidth environment, sending low-
resolution frames allows the client to be fast and re-
sponsive, but the low-resolution image feed degrades
the otherwise high quality experience. One way to
remedy the low resolution is to use super-resolution
to enhance the resolution and content of the image
frame.

Sub-Pixel CNN. For our application, we desire
a lightweight, fast, and effective way to do super-
resolution. We thus chose to adopt the Sub-Pixel
CNN [5], which satisfies all of these criteria. The
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Sub-Pixel CNN is an efficient and lightweight con-
volutional neural network (CNN) designed for real-
time super-resolution of 1080p videos.

We use the implementation of Sub-Pixel CNN
provided as part of the official PyTorch code exam-
ples 1. The neural network model is very lightweight,
with model weights that are only 245 KB (the size of
only 7 compressed low-resolution images) and can
easily be sent from the server to the client. When
deployed on the client, the super-resolution adds a
slight overhead of just 0.04 seconds per frame, while
greatly enhancing the frame quality.

Model Training. We adapt the Sub-Pixel CNN for
use in our system by training the model on image
frames from the 3D virtual environment. We run the
server in high-resolution mode (1440x1080) and col-
lect 72 high-resolution screen captures from each of
the 120 different scenes in the AI2-THOR environ-
ment, for a total of 8640 images. The 72 images per
scene correspond to having the agent stand in place
in each scene and take a screen capture at 72 different
viewpoints in 5 degree increments. This collection of
high-resolution image frames constitutes our training
dataset for the Sub-Pixel CNN. Note that since our
training data spans all 120 scenes in the AI2-THOR
environment, we can train a single Sub-Pixel CNN
model and use the same model for super-resolution
in all 120 different scenes.

We also collect 5 additional screen captures for
each of the 120 scenes for use in evaluating our
trained model. We implemented a screen cap-
ture functionality on the client and manually moved
around inside each scene to collect 5 representative
images per scene. This collection of 600 images con-
stitutes our evaluation dataset.

The Sub-Pixel CNN model is trained to apply a
super-resolution that enlarges images by a factor of
3. During training, we bilinearly downscale each im-
age by a factor of 3, and train the model to recover
the original high-resolution image. We use the sug-
gested hyperparameters of batch size 4 and learning
rate 0.001, and train for 120 epochs on our custom
dataset. We evaluate our trained model using our
evaluation dataset and present our results in Section
3.4. Note that the model training is done entirely of-

1https://github.com/pytorch/examples/
tree/master/super_resolution

fline, so the training time has no effect on the end
user experience.

Model Deployment. Once the Sub-Pixel CNN
model is trained, we deploy the model on the
client. This involves a one-time transfer of the
model weights from the server to the client. The
weights are only 245 KB in size and equivalent
to 7 low-resolution image frames. Every time a
low-resolution 480x360 frame is received over the
network by the client, the client will run the im-
age frame through the Sub-Pixel CNN, generating
a high-resolution 1440x1080 frame that is shown to
the end user.

3 Evaluation

In the following sections, we evaluate our system,
showing performance measurements in Sections 3.1
and 3.2, qualitative comparisons with baselines in
Section 3.3, as well as a quantitative evaluation of
the neural super-resolution model in Section 3.4.

3.1 Bandwidth Usage

We measured the bandwidth usage of our system by
recording the size in bytes of each frame sent by the
server. As mentioned in Section 2.1, we use JPEG
image compression across the board as it gives over
an order of magnitude reduction in size with very
small reduction in image quality. For high-resolution
1440x1080 frames, each frame is 263 KB in size,
while for low-resolution 480x360 frames, each frame
is 36 KB in size. We see that sending low-resolution
frames over the network rather than high-resolution
directly gives over 7x reduction in the bandwidth re-
quired per frame. Furthermore, by applying super-
resolution to low-resolution frames, our system is
able to deliver high quality image frames to the user
while only using the bandwidth of a low-resolution
system.

3.2 Latency and Frame Rate

We show in Figure 2 latency and frame rate measure-
ments of our real-time virtual reality system. We take
the measurements on the client, and run all measure-
ments for about a minute, beginning measurement
after a 3 frame warm-up period since the client takes
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Network Bandwidth System Setup Latency (s) Frame Rate (fps)

480x360 0.0286 24.86
800Mbps 1440x1080 0.0939 9.51

1440x1080 (ours) 0.0622 14.49

480x360 0.0617 13.76
12Mbps 1440x1080 0.2825 3.40

1440x1080 (ours) 0.0995 9.38

Figure 2: We measure the latency and frame rate of our system, which transfers low-resolution frames that
become 1440x1080 after neural super-resolution. We consider both low-bandwidth (12 Mbps) and high-
bandwidth (800 Mbps) network conditions, and compare with baselines that do not use super-resolution.
We find that in low-bandwidth conditions, our method is able to deliver high-resolution 1440x1080 frames
at 9.38 fps. This is comparable to the frame rate of 9.51 fps achieved by the baseline high-resolution setup,
as measured in much better network bandwidth (800 Mbps) conditions.

some time to initialize. The latency is defined as the
time it takes for the display to update after a key-
press, and measures the per-frame round trip time to
the server and back. The frame rate is simply com-
puted as the number of frames received divided by
the length of the time period over which those frames
were received.

From our measurements in Figure 2, we can ob-
serve that the baseline setup for 480x360 always has
a higher frame rate than the 1440x1080 setup, be-
cause (1) it takes longer to transfer the higher res-
olution frames over the network, and (2) it takes
longer for the VR engine to render high-resolution
frames. We note that over the 800 Mbps connection,
the frame rate for streaming 1440x1080 is bottle-
necked not by the network bandwidth, but by the rate
at which the server can render the high-resolution
frames.

When comparing our system, which applies super-
resolution to 480x360 frames, to the baselines, we
observe that the frame rate is lower than that of the
480x360 baseline. This is because the neural super-
resolution adds an overhead of about 0.04 seconds
per frame. However, in comparison with the low-
resolution 480x360 frames, the frames generated by
our system are of much higher quality, as shown in
Figure 4. Compared to the 1440x1080 baseline, we
observe that the high-resolution baseline is simply
infeasible in 12 Mbps conditions, whereas our sys-
tem is able to run at 9.38 fps, comparable to the
9.51 fps frame rate achieved by the high-resolution
baseline in 800 Mbps conditions.

3.3 Qualitative Comparison with Baselines

We perform a qualitative evaluation by running our
system in low-bandwidth network conditions and
comparing with baselines. As indicated by the frame
rate measurements in Figure 2, the high-resolution
setup is infeasibly slow at 12 Mbps, so we qualita-
tively compare with the 480x360 baseline. We show
several example comparisons in Figure 4.

Across all scenes we looked at, there was a no-
ticeable improvement in image quality of our sys-
tem compared with the low-resolution baseline. We
also qualitatively compare our system with the high-
resolution baseline running in high-bandwidth con-
ditions. An example is shown in Figure 3, where
(b) is compared with (d). Upon direct comparison,
our generated high-resolution frames are not as finely
detailed as the baseline 1440x1080 frames, owing
to the limitations of super-resolution. However, our
system has a much lower bandwidth requirement
than the baseline 1440x1080 setup, and is able to run
smoothly even in low-bandwidth conditions.

3.4 Evaluation of the Sub-Pixel CNN

As discussed in Section 2.4, we constructed a dataset
to evaluate the super-resolution performance of the
Sub-Pixel CNN model. The criteria most com-
monly used in evaluating super-resolution methods
is the peak signal-to-noise ratio (PSNR). Our trained
model achieves an average PSNR of 38.08 dB.
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4 Related Work

Adaptive Bitrate Video Streaming. There have
been a lot of recent work on adaptive bitrate video
streaming schemes to address poor network condi-
tions. These methods propose to use machine learn-
ing to dynamically adjust the video streaming bi-
trate based on the prevailing network conditions.
For example, Pensieve [4] applies deep reinforce-
ment learning to determine the best bitrate for video
streaming. However, these methods do not directly
enable real-time VR streaming, as they still must
tradeoff between resolution and responsiveness in
low-bandwidth conditions.

NAS [7] is another ABR system for improved
video streaming that extends Pensieve. In particular,
rather than simply doing bitrate selection, NAS also
proposes the use of deep neural networks (DNNs)
for super-resolution of lower quality frames. Their
strategy of applying super-resolution to lower quality
frames serves as the main inspiration for our work. In
contrast to their work, we apply super-resolution to
real-time virtual reality streaming rather than video
streaming, and focus exclusively on delivering a high
quality user experience in low-bandwidth network
conditions.

Super-Resolution. Recently, there has been a lot
of work in the field of deep learning on learned meth-
ods for image super-resolution [1, 3]. However, deep
learning models are known to often be heavyweight
and computationally expensive. Fortunately, with the
development of deep learning approaches for many
real-world applications, deployment of deep learning
on mobile and low-power compute platforms has be-
come an very active area of research. For our work,
we adapt the Sub-Pixel CNN [5] since its efficiency
and lightweight design is well-suited for our system.

5 Conclusion

We proposed a method to enable high quality VR
streaming in low-bandwidth network conditions.
Our approach is to send frames from the rendering
server to the client in low-resolution, allowing our
system to be fast and responsive. To also maintain
high image quality for the user, we use neural super-
resolution on the client machine to upscale the low-
resolution frames to high-resolution before display-

ing them. Our system is able to deliver a VR ex-
perience that is fast, responsive, and high-resolution,
even under low-bandwidth network conditions.
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(a) 480x360 (b) 1440x1080

(c) bilinear downsampling (d) ours

Figure 3: A visual comparison of different setups. Running the 3D virtual environment directly in low-
resolution (480x360) or high-resolution (1440x1080) mode gives frames that look like (a) or (b), respec-
tively. However, the low-resolution frame from the 3D environment (a) has too many image artifacts. In
our approach, we instead bilinearly downscale the high-resolution frame from the 3D environment (b) to
get a smoother low-resolution 480x360 frame (c), which the server sends to the client. The client then
applies neural super-resolution on (c) to get (d), the final upscaled high-resolution 1440x1080 frame. With
this approach, our system is able to deliver high quality frames to the end user, while only using the low
network bandwidth of a low-resolution setup.
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(a) 480x360 (b) ours

(c) 480x360 (d) ours

(e) 480x360 (f) ours

Figure 4: Qualitative comparisons of our system with a low-resolution baseline. On the left, we show
frames rendered from the 3D environment in low-resolution mode (480x360). This mode requires very low
network bandwidth since the image frames are small. On the right, we show that our system presents much
higher quality frames to the end user, while maintaining the same low network bandwidth requirement as
the low-resolution baseline.
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