Neuronal circuits for robust online fixed-point detection

Summary. A fundamental problem in systems neuroscience is understanding how the brain learns
the non-linear dynamics of the complex world and identifies the environment’s state. Data-driven
learning in such high-dimensional spaces requires lifting the curse of dimensionality. One way of
reducing dimensionality relies on extracting from observed trajectories the underlying topological
skeleton, i.e., fized points connected by nvariant manifolds. Thus, online extraction of fixed points
from input trajectories is an important task. Whereas Dynamic Mode Decomposition (DMD) pro-
vides a framework to calculate fixed points offline, efficiently extracting fixed points online remains
an unsolved problem. Moreover, implementing the online algorithm in a biological neuronal circuit
requires it to satisfy more constraints, such as local update rules and no reliance on external memory.

In this work, we propose two biologically plausible neural networks with multi-compartment neurons
for online fixed-point detection. The first neuronal circuit (circuit A) employs mostly local learning
rules to update synaptic weights and estimate the linearized forward dynamics with high accuracy,
and then utilizes the learned recurrent circuit to infer nearby fixed points. The second algorithm
(circuit B) is a simpler recurrent neural network with synaptic weights learned by anti-Hebbian
plasticity. Experiments show that circuit A can efficiently and robustly detect stable and unstable
fixed points and all saddle points in switch-linear and non-linear systems. Though circuit B satisfies
biological constraints more strictly, it converges slowly in practice. Our circuits are potential building
blocks for a larger neuronal circuit for systems identification and model-based control.

Problem formulation. Considering a time-invariant nonlinear dynamical system, x; = F(x;_1) +
€(t), with Gaussian noise € ~ N (0, X), given a trajectory, our goal is to find a fixed point b s.t. F(b) =
b. Assuming F is differentiable, linearization around a fixed point b gives x; &~ b+ A(x,_1 — b) + €,
where A := Jg(b) is the Jacobian of F at the fixed point. The problem becomes to detect fixed
points b given the observation of a trajectory. The linear approximation is good near fixed points
for a period of time because trajectories change slowly. Thus minimizing the linear approximation
error provides a means to estimate fixed points.

Neuronal circuit A. Similar to dynamical mode decomposition (DMD)[1], we define the “fu-
ture” and the “past” trajectories of length 7', Xy = (x3y,---,x7) and X, = (xo, - ,Xp_1) and

derive an unbiased estimate A = Cpr;pl, where Cy, = % (Xf — Xf) (Xp — Xp)T and C,, =

%(Xp — Xp) (Xp — XP)T are the covariance matrices. In the offline setting, we can show that
the least-square estimate of b is given by b =~ (I — Cpr;pl)Jr ()‘(f — Cpr;plip), where * indi-
cates pseudo-inverse. The key idea of our first online algorithm is to keep track of C prijl via
updating synaptic weights in the network. Figure 1 presents the details of this circuit A algo-
rithm, where each node is a layer of neurons, and edges are synaptic connections. Each time
step, we update the circuit through steps 1-4 (left). The reciprocal lateral connections My,
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Figure 1: Neuronal circuit A: learning and inference algorithms.



and M, s approximate covariance matrices with anti-Hebbian plasticity. Note that both pre- and
post-synaptic neurons of lateral connections are subtracted by the past trajectory mean, which is
Welford’s trick [2] to keep unbiased variance estimation. The inverse of variance matrix Cszl is main-
tained by connections W,,, which is updated by the Sherman-Morrison formula. Then, we reuse
the learned recurrent circuit and iterate steps 1-4 (right) to perform stochastic gradient descent
to find the least-square estimate of b. When the learning rates 7,,7m,, 1, decay as 1/t [3], with
proper initialization, the circuit A returns the same inferred b at time T as the offline algorithm.
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Figure 2: Neuronal circuit B update rules.

Experiment Results. We test our circuits on multiple classic dynamical systems, including three
switching linear systems and two nonlinear systems (a four-fixed-points system; double pendulum).
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Conclusion. We derive two bio-
logically plausible neural networks
that can efficiently and robustly predict fixed point from a single trajectory. These networks are po-
tential building blocks of a larger neuronal circuit for systems identification and model-based control,
e.g., a bio-plausible online K-means [4] on top of them would learn all fixed points and transitions.

Figure 3: Trajectories (blue) and fixed-point estimates (red).
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