Neuronal Circuits for Robust Online Fixed-Point Detection

"Tony" Runzhe Yang¹, David Lipshutz², Tiberiu Tesileanu², Johannes Friedrich², Dmitri Chklovskii^{2,3}

¹ Computer Science Dept. & Neuroscience Institute, Princeton University ² Center of Computational Neuroscience, Flatiron Institute ³ Neuroscience Institute, NYU Langone Health

dynamics of the complex world?

- It's more efficient to learn from observed

from a single trajectory

the Jacobian matrix

least-square estimate fixed point b

$$\mathbf{b} pprox \left(\mathbf{I} - \tilde{\mathbf{A}}
ight)^+ \left(\mathbf{x}_t - \tilde{\mathbf{A}} \mathbf{x}_{t-1}
ight)$$

 $\min_{\mathbf{b}} \|(\mathbf{x}_t - \mathbf{b}) - \mathbf{M}_{fp} \mathbf{W}_{pp} (\mathbf{x}_{t-1} - \mathbf{b})\|_F^2$

FLATIRON INSTITUTE

fixed-point predictions

Robust fixed-point predictions

Piecewise Linear Systems

A building block of bio-plausible neural circuits for control

- We design a *neural circuit* that can *efficiently* and *robustly* predict fixed point from a *single* trajectory. The learning rule is mostly local.
- Applying a bio-plausible **online** *K*-means [1] on predicted fixed-points (can be further filtered by error $|\mathbf{e}_t|$ would recover all fixed-points.
- The learned weights approximate the **forward (or backward**) dynamics, which is also useful for dynamical mode decomposition [2] and estimating the long-term Lyapunov exponent with bioplausible algorithms [3].

[3] Lipshutz, et al. A biologically plausible neural network for multichannel canonical correlation analysis. Neural computation 2021

^[1] Pehlevan, Chklovskii, A Hebbian/anti-Hebbian network derived from online non-negative matrix factorization can cluster and discover sparse features. ACSSC 2014 [2] Kutz et al. Dynamic mode decomposition: data-driven modeling of complex systems. SIAM, 2016.