Neuronal Circuits for Robust Online Fixed-Point Detection
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How the brain learns the non-linear
dynamics of the complex world?
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Learning topological skeleton of dynamics

® Data-driven learning in high-dimensional spaces
requires lifting the curse of dimensionality .

® |t's more efficient to learn from

observed

trajectories the underlying topological skeleton,
i.e., to learn the fixed points connected by
invariant manifolds of a dynamical system.

® Detecting stable and unstable fixed points is
critical for balance or postural maintenance.

® To be implemented by a neuronal circuit, the
learning algorithm must be online and local.

Offline fixed-point estimation

time-invariant system
w/ Gaussian noise

x; = F(x4-1)+€

linearization around b = F(b) )
a fixed point b * x; ~ b+ A(x;_1 — b)+te

constructing X,

“past” and “future” ——

from a single trajectory R0, 81,777, AT -1, AT
. Y X
unbiased offline

estimateof A . o, O—1 O = Cov(Xy )

the Jacobian matrix IP~pp C,, = Cov(X,. X,)
least-square ~\ T ~

estimate fixed point b b~ (I N A) (Xt N AXt_l)

Phase I: online learning of forward dynamics

- it —* Step 1. maintain trajectory mean
Xp < (L —=1p) - Xp +1p - X1
Step 2. deviation from mean
Xt—1 < X¢—1 — Xp

Step 3. approximate C¢,and G, ¢
with Hebbian plasticity

My, <= (1= nm) - My + 0 - XXy

My = (1 =nm) - Myg + i - Xp—1X,

Step 4. approximate C_ | with
Sherman—Morrison formula

Phase Il: fixed-point Inference with the learned recurrent circuit

—_— X1 — X —

Step 1. subtract b from inputs

Ci—1 < X¢—1— Db

Step 2. calculate forward errors

dt—l A prct—l
€ < (Xt — b) — prdt—l

iterate

Step 4. update b
b < b+ 0b

mgn [(x¢ = b) = M, W, (x4—1 —b) [|%
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Robust fixed-point predictions

e fixed-point predictions
e trajectories

Piecewise Linear Systems
Stable + Unstable FPs
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Nonlinear Systems
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A building block of bio-plausible
neural circuits for control

® \We design a neural circuit that can efficiently and
robustly predict fixed point from a single
trajectory. The learning rule is mostly local.

® Applying a bio-plausible online K-means [1] on
predicted fixed-points (can be further filtered by
error |g, ) would recover all fixed-points.

® The learned weights approximate the forward (or
backward) dynamics, which is also useful for
dynamical mode decomposition [2] and estimating
the long-term Lyapunov exponent with bio-
plausible algorithms [3].
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