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Motivations

Today’s Deep Learning:

e Design the neural network architecture (we believe to be
suitable for encoding a policy for the task. E.g., CNNs, LSTMs,

self-attention....)

* Find the weight parameters (for the fixed architecture, solve
the optimization problem, using back-propagation.)
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Bio-plausibility (precocial behaviors):

e Innate ability (e.g. lizard  /snake Z hatchlings can escape
from predators..)

* Few-shot learning (e.g. ducks & are able to swim and eat,
turkeys @ can visually recognize predators..)



Motivations

Question: Can we find neural architectures which are naturally
capable of performing a task even when their weight parameters
are randomly sampled (i.e., no learning at all)?

Deep learning building blocks (inductive biases):
e CNN, RNN, LSTM, self-attention, capsule...

e Randomly-initialized CNNs can be used effectively for image
processing tasks such as superresolution, inpainting and style
transfer.

e A randomly-initialized LSTM with a learned linear output layer
can predict time series.



Related work

Neural Architecture Search (NAS):

e Search neural network topology using evolutionary
algorithms (e.g., NEAT algorithm)

e Narrow the search space to architectures composed of
basic building blocks (CNN/RNN cell/self-attention)

e Time-costly inner loops for training (find the optimal
weight parameters)

e Never claimed that the solution is innate to the structure of
the network. — The weights are the solution; the found
architectures only a substrate for the weights to inhabit.
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Related work

Bayesian Neural Networks (BNN):

e Weight parameters are sampled from a distribution.

e The distribution is learned and usually has more
parameters then the number of weights.

e Recent variance networks shows that network ensembles
whose weights are sampled from a zero mean distribution

can perform well on image recognition tasks (counter-
intuitive...)
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Related work

Algorithmic Information Theory (AIT):

e Occam’s razor. Simplifying the search space of its weights.
(soft-weight sharing, regularization, etc.)

e Recent work establishes the description length of deep
learning models based on architectures. Goal of this paper
is to fined minimal architectures, instead of simple weights.



Related work

Network Pruning:

e Pruned networks that can achieve image classification
accuracies that are much better than chance even with
randomly initialized weights.

e Complementary approach: starts with a full, trained
network, and takes away connections.



Related work

Connectomics:

e Wiring diagram of all neural connections of the brain.

Human connectome has ~90 billion neurons and ~150
trillion synapses.

e Hope to gain insight about how the brain learns and
represents memories in its connections.

 Deemphasize learning of weight parameters to test the
importance of the network architecture.



Method - Weight Agnostic Neural Network Search

1.) Initialize 2.) Evaluate 3.) Rank 4.) Vary
Create population of Test with range of Rank by performance  Create new population by
minimal networks. shared weight values. and complexity varying best networks.
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Method - Weight Agnostic Neural Network Search

1.) Initialize
Create population of
minimal networks.
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Method - Weight Agnostic Neural Network Search

1.) Initialize
Create population of
minimal networks.
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e Start with a population of minimal network
topologies.

e No hidden nodes. Only a fraction of the
possible connections between input and
output.



Method - Weight Agnostic Neural Network Search

2.) Evaluate
Test with range of
shared weight values.
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Method - Weight Agnostic Neural Network Search

2.) Evaluate
Test with range of

shared weight values.
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Fach network is evaluated
over multiple rollouts.

Fach rollout has different
shared weight value assigned
to all connections.

Use fixed series of weight
values (-2, -1, -0.5, +0.5, +1,
+2). (assume U[-2,2] In test).

Obtain mean performance
and max performance.



Method - Weight Agnostic Neural Network Search

3.) Rank
Rank by performance
and complexity
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Method - Weight Agnostic Neural Network Search

3.) Rank

e Multi-objective optimization: Rank by performance
* Mean performance and complexity
* Max performance :

e # Connections (complexity) % o
- Z .

e No linear order: sometimes # 8 o
Connections T but mean/max Z
performance {. Sorting based [y o
on dominance relationship.

Iy o

e In 80% cases: ranked by (mean
performance, # connections), in12
20% cases: ranked by (mean
performance, max performance)
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Method - Weight Agnostic Neural Network Search

e Multi-objective optimization:
* Mean performance
* Max performance
e # Connections (complexity)

e No linear order: sometimes #
Connections T but mean/max
performance {. Sorting based
on dominance relationship.

e In 80% cases: ranked by (mean
performance, # connections), in
20% cases: ranked by (mean

performance, max performance)

3.) Rank

Rank by performance
and complexity
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e Tournament: only the
highest ranked
network topologies
survive.



Method - Weight Agnostic Neural Network Search

4.) Vary
Create new population by
varying best networks.
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Method - Weight Agnostic Neural Network Search

Insert Node Add Connection Change Activation 4.) Vary
/7 N\ /S N\ /- N Create new population by
O @ O @ O N varying best networks.
O O O
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o
e Insert Node: a new node is inserted by splitting T o)
an existing connection. 3
S
e Add Connection: a new connection is added by g
connecting two previously unconnected nodes. e
] ° . . . \CO)_)
e Change Activation: the activation function of a
hidden node is reassigned.




Method - Weight Agnostic Neural Network Search

Nod.e Ac'tlva’flons 4. Vary
- ’ A\ Create new population by
N 7= varying best networks.
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Possible activation functions contain: S~
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Method - Weight Agnostic Neural Network Search

1.) Initialize 2.) Evaluate 3.) Rank 4.) Vary
Create population of Test with range of Rank by performance  Create new population by
minimal networks. shared weight values. and complexity varying best networks.
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Experiment - Continuous Control

Three tasks:

CartPoleSwingUp BipedalWalker-v2 CarRacing-vO

e Inspired by biological facts: lizard ¥, snake 2, ...



Experiment - Continuous Control

Evaluation:
Wii~U(-2,2) W~U(-2,2) Opt.W Opt. Wi
Swing Up Random Weights | Random Shared Weight | Tuned Shared Weight | Tuned Weights
WANN 57 £ 121 515 £ 58 723 1+ 16 932 + 6
Fixed Topology 21 £43 7+2 8t1 918 £7
Biped Random Weights | Random Shared Weight | Tuned Shared Weight | Tuned Weights
WANN -46 + 54 51 £+ 108 261 + 58 332+ 1
Fixed Topology -129 + 28 -107 £ 12 -35 £ 23 347 + 1 [38]
CarRacing Random Weights | Random Shared Weight | Tuned Shared Weight | Tuned Weights
WANN -69 + 31 375 £ 177 608 + 161 893 + 74
Fixed Topology -82 £ 13 -85 £+ 27 -37 £ 36 906 + 21 [39]

Performance of Randomly Sampled and Trained Weights for Continuous Control Tasks

The mean performance (over 100 trials) of the best weight agnostic network architectures
found are compared with standard feed forward network policies commonly used in previous
work (SOTA baselines for Biped and for CarRacing).



Experiment - Continuous Control

Network Evolution:

Generation 8

Generation 32

Generation 128

dxg ° iy dx g : n, dx g : )
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Development of Weight Agnostic topologies over time

G8: An early network which performs poorly with nearly all weights.
(32: Relationships between the position of the cart and velocity of the pole are established.
G 128: Complexity is added to refine the balancing behavior of the elevated pole.



Experiment - Continuous Control

Champion networks:
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Experiment - Continuous Control
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Experiment - Classification

MNIST digit o
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e The design of architectures is a focus for classification
tasks. "human-led architecture search” on MNIST.

e High-dimensional inputs.



Experiment - Classification

WANN Test Accuracy
Random Weight |82.0% + 18.7%
Ensemble Weights | 91.6%

Tuned Weight 91.9%

Trained Weights | 94.2%

ANN Test Accuracy
Linear Regression [91.6% [62]

Two-Layer CNN

99.3% [15]

Classification Accuracy on MNIST

WANNSs instantiated with multiple weight values acting as an ensemble perform far
better than when weights are sampled at random, and as well as a linear classifier

with thousands of weights. No single weight value has better accuracy on all digits.
The ensemble classifies samples according to the category which received the most

votes.

Weight Value
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Digit Accuracy By Weight
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Experiment - Classification

# of Classes Used
by Each Input

[E—
o

Receptive Field:

Not all neurons and connections are used to
predict each digit. Starting from the output
connection for a particular digit, we can
map out the part of the network used to
classify that digit. We can also see which
parts of the inputs are used for classification.

SO = N W B U0 &N J 0 O




Discussion

Generation 32
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Shared Weight Value

Sample shared weights from a zero-mean uniform distribution?




Discussion

e Fine-tuning shared weights is useful in few-shot learning.
e Convolutional layers are unbeatable?
e Baldwin effect: not the blank slates.

e Language acquisition: Chomsky’s P&P theory?



