

Weight Agnostic Neural Networks

(To Appear at NeurIPS 2019)

Adam Gaier, David Ha

Today's Deep Learning:

- **Design the neural network** <u>architecture</u> (we believe to be *suitable* for encoding a policy for the task. E.g., CNNs, LSTMs, self-attention....)
- Find the <u>weight parameters</u> (for the fixed architecture, solve the *optimization* problem, using back-propagation.)

Today's Deep Learning:

- **Design the neural network** <u>architecture</u> (we believe to be *suitable* for encoding a policy for the task. E.g., CNNs, LSTMs, self-attention....)
- Find the <u>weight parameters</u> (for the fixed architecture, solve the *optimization* problem, using back-propagation.)

Question: Can we find neural architectures which are naturally capable of performing a task even when their weight parameters are randomly sampled (i.e., no learning at all)?

Question: Can we find neural architectures which are naturally capable of performing a task even when their weight parameters are randomly sampled (i.e., no learning at all)?

Question: Can we find neural architectures which are naturally capable of performing a task even when their weight parameters are randomly sampled (i.e., no learning at all)?

Bio-plausibility (precocial behaviors):

- Innate ability (e.g. lizard *J* / snake 2/2 hatchlings can escape from predators..)
- Few-shot learning (e.g. ducks 🦆 are able to swim and eat, turkeys 💓 can visually recognize predators..)

Question: Can we find neural architectures which are naturally capable of performing a task even when their weight parameters are randomly sampled (i.e., no learning at all)?

Deep learning building blocks (inductive biases):

- CNN, RNN, LSTM, self-attention, capsule...
- Randomly-initialized CNNs can be used effectively for image processing tasks such as superresolution, inpainting and style transfer.
- A randomly-initialized LSTM with a learned linear output layer can predict time series.

Neural Architecture Search (NAS):

- Search neural network topology using **evolutionary algorithms** (e.g., NEAT algorithm)
- Narrow the search space to architectures composed of **basic building blocks** (CNN/RNN cell/self-attention)
- Time-costly **inner loops** for training (find the optimal weight parameters)
- Never claimed that the solution is innate to the structure of the network. The **weights are the solution**; the found architectures only a substrate for the weights to inhabit.

Neural Architecture Search (NAS):

- **S** Search neural network topology using **evolutionary algorithms** (e.g., NEAT algorithm)
- D Narrow the search space to architectures composed of basic building blocks (CNN/RNN cell/self-attention)
- D Time-costly inner loops for training (find the optimal weight parameters)
- D Never claimed that the solution is innate to the structure of the network. — The weights are the solution; the found architectures only a substrate for the weights to inhabit.

Bayesian Neural Networks (BNN):

- Weight parameters are **sampled** from a distribution.
- The distribution is **learned** and usually has more parameters then the number of weights.
- Recent variance networks shows that network ensembles whose weights are sampled from a zero mean distribution can perform well on image recognition tasks (counter-intuitive...)

Bayesian Neural Networks (BNN):

- **S** Weight parameters are **sampled** from a distribution.
- D• The distribution is **learned** and usually has more parameters then the number of weights.
- **S** Recent **variance networks** shows that network ensembles whose weights are sampled from a **zero mean** distribution can perform well on image recognition tasks (counter-intuitive...)

Algorithmic Information Theory (AIT):

- Occam's razor. Simplifying the search space of its **weights**. (soft-weight sharing, regularization, etc.)
- Recent work establishes the description length of deep learning models based on **architectures**. Goal of this paper is to fined minimal architectures, instead of simple weights.

Network Pruning:

- **Pruned networks** that can achieve image classification accuracies that are much **better than chance** even with randomly initialized weights.
- **Complementary approach**: starts with a full, trained network, and takes away connections.

Connectomics:

- Wiring diagram of all neural connections of the brain. Human connectome has ~90 billion neurons and ~150 trillion synapses.
- Hope to gain insight about how the brain learns and represents memories in its **connections**.
- **Deemphasize** learning of weight parameters to test the importance of the network architecture.

1.) Initialize *Create population of minimal networks.* **2.) Evaluate** Test with range of shared weight values **3.) Rank** Rank by performance and complexity

4.) Vary *Create new population by varying best networks.*

1.) Initialize *Create population of minimal networks.*

000

00

0

4.) vary Create new population by varying best networks.

- Start with a population of minimal network topologies.
- No hidden nodes. Only a fraction of the possible connections between input and output.

1.) Initialize *Create population oj minimal networks*. **2.) Evaluate** *Test with range of shared weight values.* **3.) Rank** Rank by performance and complexity

4.) Vary *Create new population by varying best networks.*

1.) Initialize *Create population of minimal networks*. **2.) Evaluate** *Test with range of shared weight values.*

• Each network is evaluated over **multiple rollouts.**

- Each rollout has different shared weight value assigned to all connections.
- Use fixed series of weight values (-2, -1, -0.5, +0.5, +1, +2). (assume U[-2,2] in test).
- Obtain mean performance and max performance.

1.) Initialize *Create population of minimal networks*. **2.) Evaluate** Test with range of shared weight values **3.) Rank** *Rank by performance and complexity*

4.) Vary *Create new population by varying best networks.*

- **Multi-objective** optimization:
 - Mean performance
 - Max performance
 - # Connections (complexity)
- No linear order: sometimes # Connections 1 but mean/max performance 1. Sorting based on dominance relationship.
- In 80% cases: ranked by (mean performance, # connections), in -Σ
 20% cases: ranked by (mean performance, max performance) -Σ

3.) Rank *Rank by performance and complexity*

4.) Vary *Create new population by varying best networks.*

1.) Initialize *Create population of minimal networks*. **2.) Evaluate** Test with range of shared weight values **3.) Rank** Rank by performance and complexity

4.) Vary *Create new population by varying best networks.*

.) **Evaluate** est with range of hared weight values. **3.) Rank** Rank by performance and complexity

4.) Vary *Create new population by varying best networks.*

Possible activation functions contain: linear, step, sin, cosine, Gaussian, tanh, sigmoid, inverse, absolute value, ReLU

negation...

Three tasks:

CartPoleSwingUp Bipedal

BipedalWalker-v2

CarRacing-v0

• Inspired by biological facts: lizard 🕉, snake 🍒, ...

Evaluation:

	Wij~U(-2,2)	W~U(-2,2)	Opt.W	Opt.Wij
Swing Up	Random Weights	Random Shared Weight	Tuned Shared Weight	Tuned Weights
WANN	57 ± 121	515 ± 58	$\textbf{723} \pm \textbf{16}$	932 ±6
Fixed Topology	21 ± 43	7 ± 2	8 ± 1	918 ± 7
Biped	Random Weights	Random Shared Weight	Tuned Shared Weight	Tuned Weights
WANN	-46 ± 54	51 ± 108	261 ± 58	332 ± 1
Fixed Topology	-129 ± 28	-107 ± 12	-35 ± 23	$347 \pm 1 \ [38]$
CarRacing	Random Weights	Random Shared Weight	Tuned Shared Weight	Tuned Weights
WANN	-69 \pm 31	375 ± 177	$\textbf{608} \pm \textbf{161}$	893 ± 74
Fixed Topology	-82 ± 13	-85 ± 27	-37 ± 36	906 ± 21 [39]

Performance of Randomly Sampled and Trained Weights for Continuous Control Tasks

The mean performance (over 100 trials) of the **best weight agnostic network architectures** found are compared with **standard feed forward network policies** commonly used in previous work (SOTA baselines for Biped and for CarRacing).

Network Evolution:

Development of Weight Agnostic topologies over time

G8: An early network which performs poorly with nearly all weights. *G32*: Relationships between the position of the cart and velocity of the pole are established. *G128*: Complexity is added to refine the balancing behavior of the elevated pole.

 $\bullet i_{\eta_V}$

CartpoleSwingUp champion network

BipedalWalker champion network

Champion networks:

Champion network for CarRacing-v0

Experiment - Classification

- The design of architectures is a focus for classification tasks. **"human-led architecture search"** on MNIST.
- High-dimensional inputs.

Experiment - Classification

WANN	Test Accuracy
Random Weight	<i>82.0%</i> ± <i>18.7%</i>
Ensemble Weights	91.6%
Tuned Weight	91.9%
Trained Weights	94.2%

ANN	Test Accuracy
Linear Regression	91.6% [62]
Two-Layer CNN	99.3% [15]

Classification Accuracy on MNIST

WANNs instantiated with multiple weight values acting as an ensemble perform far better than when weights are sampled at random, and as well as a linear classifier with thousands of weights. **No single weight value has better accuracy on all digits**. The ensemble classifies samples according to the category which received the **most votes**.

Experiment - Classification

Receptive Field:

Not all neurons and connections are used to predict each digit. Starting from the output connection for a particular digit, we can map out the part of the network used to classify that digit. We can also see which parts of the inputs are used for classification.

Discussion

Sample shared weights from a zero-mean uniform distribution?

?

Discussion

- Fine-tuning shared weights is useful in few-shot learning.
- **Convolutional layers** are unbeatable?
- **Baldwin effect:** not the blank slates.
- Language acquisition: Chomsky's P&P theory?

• ...