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Abstract—Neural networks with Hebbian excitation and anti-
Hebbian inhibition form an interesting class of biologically
plausible unsupervised learning algorithms. It has recently been
shown that such networks can be regarded as online gradient
descent-ascent algorithms for solving min-max problems that
are dual to unsupervised learning principles formulated with no
explicit reference to neural networks. Here we generalize one such
formulation, the correlation game, by replacing a hard constraint
with a soft penalty function. Our ‘“softened” correlation game
contains the nonnegative similarity matching principle as a
special case. For solving the primal problem, we derive a
projected gradient ascent algorithm that achieves speed through
sorting. For solving the dual problem, we derive a projected
gradient descent-ascent algorithm, the stochastic online variant
of which can be interpreted as a neural network algorithm. We
prove strong duality when the inhibitory connection matrix is
positive definite, a condition that also prohibits multistability of
neural activity dynamics. We show empirically that the neural net
algorithm can converge when inhibitory plasticity is faster than
excitatory plasticity, and may fail to converge in the opposing
case. This is intuitively interpreted using the structure of the
min-max problem.

Index Terms—neural networks, Hebbian learning

I. INTRODUCTION

Neural networks with Hebbian feedforward and anti-
Hebbian lateral connections are an interesting class of biologi-
cally plausible unsupervised learning algorithms [1], [2]. (See
also historical references cited in Ref. [3].) Recently it was
shown that such networks can be regarded as online gradient
descent-ascent (GDA) algorithms for solving min-max prob-
lems. This was shown for a linear network! by Pehlevan et al.
[4], and for a nonlinear network by Seung and Zung [3]. In
the latter work, nonnegativity constraints were imposed on the
activities and connections, so that the feedforward connections
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are excitatory and the lateral connections are inhibitory, as in
the original model of Foldidk [1].

The min-max problems are in turn dual to unsupervised
learning principles that are formulated with no explicit ref-
erence to neural networks. Pehlevan et al. formulated the
similarity matching principle [4], while Seung and Zung [3]
formulated the “correlation game,” the maximization of input-
output correlations subject to an upper bound constraint on
output-output correlations.

Here we propose a generalization of the correlation game
in which the hard constraint is replaced by a soft penalty
function. This contains the nonnegative similarity matching
principle [5] as a special case, and the original correlation
game [3] as a limiting case. Gradient ascent can be used
to find a local optimum of the softened correlation game.
We show through numerical experiments that the parameters
of the penalty function can be used to control output-output
correlations.

Through a duality transformation, the softened correlation
game becomes a max-min problem, which can be solved
by gradient descent-ascent (GDA). In the neural network
interpretation, GDA contains some output variables that repre-
sent neural activities. Legendre transform variables represent
excitatory and inhibitory neural connections. We show through
numerical experiments that GDA may produce approximately
the same results as gradient ascent, i.e., that strong duality
holds at least approximately in some cases. GDA has both
batch and stochastic online variants, the latter of which is more
biologically plausible.

We then go on to address two issues: duality and conver-
gence. Pehlevan et al. [4] showed that learning by their linear
network satisfies strong duality with the similarity matching
principle. Seung and Zung [3] showed only weak duality for
their nonlinear network. In this paper we derive sufficient
conditions for strong duality of the nonlinear network. It turns
out that the inhibitory connection matrix should be positive
definite for strong duality.

GDA does not necessarily converge to a steady state.
Pehlevan et al. [4] did a linear stability analysis for learning
by a linear network, and showed convergence if inhibitory
plasticity is sufficiently fast relative to excitatory plasticity.
We present example numerical simulations showing that the



nonlinear network converges to a steady state for fast inhibition
but exhibits more complex dynamical behaviors for slow
inhibition. We give intuitive arguments as to why convergence
should be seen with fast inhibition but not slow inhibition.
Convergence proofs for fast inhibition should be possible by
extending existing methods [6]—[8], but are postponed to future
work.

II. UNSUPERVISED LEARNING PRINCIPLE

Given a matrix U = [u(1), ..., u(T)] of T input vectors, we
define unsupervised learning as the optimization

o (52) - (52} o

with respect to the matrix X = [x(1),...,x(7T")] of T output
vectors. The functions ®* and U* are assumed chosen so that
—F(X) is radially unbounded in the nonnegative orthant, a
sufficient condition for the existence of the optimum. The
output vectors produced by unsupervised learning should
ideally be some “useful” representation of the input vectors.

We further assume that ®* and U* are chosen to be nonde-
creasing functions of the elements of their matrix arguments.
Therefore our unsupervised learning principle aims to make
the input-output correlation matrix XUT /T large and make the
output-output correlation matrix X X7 /T small. If the input-
output correlations are large, that means the output vectors are
related to the input vectors. If the output-output correlations
are small, that means different elements of the output carry
different kinds of information.

To guarantee the nondecreasing property, we will write ®*
and ®* as Legendre transforms,

max F(X) = max
X>0 X>0

" (C) = max {TrwCT —d(W)} (2)
U*(C) = max {Tr LCT — ¥(L)} 3)

We will assume that & and ¥ are strongly convex, so
that the maximum and minimum in the Legendre trans-
forms are attained. The nondecreasing property holds because
00*(C)/9C;q = Wi > 0, where Wy, is the solution of Eq.
(2) for a given C. We also assume without loss of generality
that U(L) = ¥(LT), since U* is a function of a symmetric
matrix in Eq. (1).

While our formalism is quite general, we will also be
interested in the special case

v () = i Jio oy )

where [2]T = max(z,0) is defined as (half-wave) rectification.
The off-diagonal terms of Eq. (4) tend to push output-output
correlations to be less than D or encourage them to be small
if they are greater than D. Each diagonal term of Eq. (4)
tends to push output power 771 Y", X2 to be less than D;;
or encourage it to be small if greater than D;;.

In the 4 — O limit, Eq. (4) drives the output-output
correlation matrix to be less than or equal to D. Then Eq. (1)

becomes a penalty function method for solving the constrained
optimization

XUT XXT
max@*( g>subject to T <D 5)

where the matrix D is an upper bound constraint on the output-
output correlations. This was previously called the “correlation
game” by Ref. [3]. For finite p, we obtain a variant of the
correlation game with a soft constraint.

If we further set D = 0 and ®*(C) = Tr CTC, we obtain
the nonnegative similarity matching principle of Ref. [5],

1
F(X) = -2 XTX - UTU||> + const (6)

(This is easy to see for p = 1, but also holds up to rescaling
for other positive values of p.)
We will also be interested in the special case

2
(W) = % Z W2, + g > (Z W) (M

%

The optimum in Eq. (2) satisfies

+
Wia=~"" lcm - K Z Wib‘| (8)
b

The second term of Eq. (7) has effectively induced a kind
of “competition” within each row of the matrix C, so that
Wiq is only positive for those C;, that exceed the threshold
kY, Wip. As a result, ®* ends up depending only on the
largest elements of each row of the matrix C'. The form of
competition is similar to that studied by Seung and Zung [3],
who placed ), W;, — p inside the parentheses in Eq. (7).

III. LEARNING BY GRADIENT ASCENT
Rewriting Eq. (1) using the Legendre transforms yields

max F(X) = max max min F(W, L, X) )
X>0 X>0 W>0 L>0
where

FW,L,X)="Tr (WUTXT) — d(W)

f% {Tr (L);XT) - \IJ(L)] (11)

The max in Eq. (3) has changed to min because of the minus
sign before ¥*(L) in Eq. (1).

Then the optimization of Eq. (9) can be performed using
projected gradient ascent,

(10)

1 +
X [X+77XT(W*U—L*X)] (12)
where
W* =argmax {Tt WUXT/T — (W)}, (13)
W>0
and
L* =argmax{Tr LXXT/T — V(L)} (14)

L>0



These maxima are uniquely defined assuming that & and ¥
are strongly convex.

For the special case of the penalty function in Eq. (4), ¥*
is the Legendre transform of

(L) = gZij +Y DLy (15)
ij ij
and we can solve for L* in closed form,
XXT +
L*=pt { T D] (16)

Note that when = 0, as in the case of the hard constraint
considered by [3], L* is undefined so the gradient ascent on
X algorithm is not directly applicable to the correlation game
with hard constraints.

To find W* we need to solve Equation (8). The key idea
behind the algorithm is that if we know exactly which elements
of W* are nonzero, we can easily compute:

* *
ib — ib
b

b:W 7, #0
and insert this quantity into Eq. (8) to determine W*. Sum-
ming Eq. (8) over a such that W, # 0 gives:

3 W;:% S Cu-kE S wp

a:Wr #0 a:Wk #0 v a:Wk #0

a7

(18)

where k7 is the number of nonzero elements of W* in every
row ¢. Bringing the 2nd term on the lefthand side of the

equation gives:
1
S Wi
b:W7, #0 v+ ks

Cia
a:Wp #0

19)

Using Eq. (8) we can see that the locations ¢, a where W* >
0 are at the locations where C}, is one the the top k] elements
of the i’th row.

We now describe the algorithm used to compute k. First
sort every row of C. Specifically for every row i, find an
ordering {ai,az, ...a,,} such that Ci,, > Ciy,, if & < K.
Use this ordering to compute the N x M matrix:

k

K
Sik = T kR ZC’iaj

j=1

(20)

For any k; < k} we know that W;, > 0 and therefore
Cia, — Sir > 0. Conversely we know that for any k; > k
we know that W;, = 0 and therefore C,, — Sir < 0. We can
therefore compute k; by computing the maximal k for every
row such that:

k;k = max k such that S;, < Ciak 2n
ke{1,2,...,M}
Finally we can analytically compute W;" using Sig::
1
Win == [Cia = Sie] " 22)

The time complexity of this algorithm is dominated by the
sorting that must be done for every row of C. There are n

rows, each of which requires m logm steps to sort giving us
a complexity of O(nmlogm)

So long as nx is sufficiently small, we generally expect
that the algorithm at least finds a local maximum of F. We
will perform numerical experiments with this algorithm in a
later section. A potential drawback of the algorithm is that it
is unclear how to extend it to the online setting. In general,
we cannot write the gradient as a sum over examples.

IV. LEARNING BY GRADIENT DESCENT-ASCENT

To derive an online algorithm for approximately solving
Eq. (1), we will transform the primal problem (9) into a dual.
The maximums over X and W commute, so by the max-min
inequality, we can write the upper bound

max F'(X) < max inf sup F(W, L, X) (23)
X>0 W2>0L>0 X>0
< max inf R(W, L) (24)
W>0L>0
where we have defined
R(W, L) = sup F(W, L, X) (25)

X>0

One can attempt to solve this max-min problem by projected
gradient descent-ascent (GDA), i.e.

OR
AW = — 2
W =nw ETiG (26)
OR
AL = _77L87L 27

followed by projection of W and L into the nonnegative
orthant. Calculating the gradients yields

XUT 09
A e 28
W o T 57 (28)
XXT ov
where X comes from optimizing
max Tr <WUXT — 1LXXT) (30)
X>0 2

Here we have replaced the sup in Egs. (23) and (25) by max,
which is appropriate if all diagonal elements of L are positive.
In that case, —F is radially unbounded for X > 0, and the
maximum over X exists. Note that the L update of Eq. (29)
preserves symmetry of L.

A potential complication is that R is not guaranteed to be
continuously differentiable everywhere. If L > 0, then Eq. (30)
has a unique global optimum and no other local optima. Then
X must change continuously as L varies, so that the derivatives
of R in Egs. (28) and (29) also change continuously. But if
L % 0, then X could jump from one optimum to another, and
the derivatives of R could have discontinuities.

For regular GDA, a steady state is a stationary point of
R(W, L). This should be modified for projected GDA.

Remark 1. For projected GDA, a steady state is equivalent
to a Karush-Kuhn-Tucker (KKT) point.



The KKT conditions for a max-min problem with non-
negativity constraints are analogous to those for a regular
optimization with nonnegativity constraints. For all ¢ and a,

3?/1171 =0and W;, >0 3D
" 8?/112 <0and W;, =0 (32)
For all ¢ and 7,

aajj =0and L;; >0 (33)
" ;L}Z >0and L;; =0 (34)

While GDA is still a batch algorithm as written above, it
can be turned into an online algorithm. Given W, L, and a
randomly chosen input vector u, solve

1
max Tr <XTWU — xTLx> (35)
x>0 2
This optimization can be done by projected diagonally scaled
gradient ascent

x « [x + nydiag(L) " (Wu — Lx)] * (36)
or by coordinate ascent
+
1
T; < f” ZWiaua — Z;éLZJIL'] (37)
a J:JF

The matrices W and L (off-diagonal elements), originally
introduced as Legendre transform variables, have now become
the feedforward and lateral connections of a neural net. The
diagonal elements of L can be interpreted as normalizing the
input-output function of a single neuron, or normalizing the
connections converging onto a single neuron.

After iterating to convergence, make the updates

AW o« xuT — 0®/0W
AL x xxT — 0¥ /0L

(38)
(39)

If these are averaged over the random choice of the input
vector u, then they are equivalent to the gradient updates. In
other words, the above is a stochastic online variant of GDA.

For the special cases of Eqgs. (4) and (7), these take the form

AWiq o zjttg — YWiq — K Z Wi
b
ALU X Ty — IUL” - Dij

(40)

(41)

The W update is Hebbian, because it is driven by the corre-
lation of postsynaptic activity x; and presynaptic activity u,.
The v term is a linear weight decay, and the s term gives
rise to competition between connections that converge onto
the same neuron .

The L update is anti-Hebbian for i # j, because it is driven
by the correlation of activities x; and x;. Following Foldidk

[1], we use the term “anti-Hebbian” because strengthening of
inhibition by correlated activity makes the interaction between
neurons ¢ and j more negative. For the correlation game
with hard constraint on output-output correlations (¢ = 0),
there is only constant weight decay. For nonnegative similarity
matching (D = 0), there is only linear weight decay. Both
kinds of weight decay are included in the general case of our
softened correlation game.

V. THE PENALTY FUNCTION AND CORRELATIONS

We now empirically investigate the impact of modifying p
in Eq. (4) for the same choice of ®(W) and D studied in the
previous section. For fixed D, we intuitively expect that when
w is small, X X7 /T should not be significantly larger than D,
because otherwise the penalty function U* of Eq. (4) would
contribute a large negative value to the total objective which
we are trying to maximize. On the other hand we expect that
increasing p will make the objective function more tolerant of
XXT/T being larger than D.

We set the matrix D, a soft constraint on output-output
correlations, to have q2 on the diagonal and p2 elsewhere,

¢ p? p?
P ¢ p?

D= , (42)
p* p? ¢

We use the gradient ascent algorithm to train networks using
64 neurons on the first 1000 examples of the MNIST handwrit-
ten digits dataset. We set ¢ = 1.0,p = 0.3 and v = 1.0,k =
0.1. We explore p € {0.5,1.0,2.0,4.0,8.0,16.0,32.0,64.0}.
We also train another network with 4 = 1.0 and D = 0,
which is the case of nonnegative similarity matching [5]. We
empirically see the distributions of both on- and off-diagonal
elements of X X T7/T shift to the right as we increase p.

Fig. 1 also plots the ratio of the average off-diagonal to
the average on-diagonal correlations. As 1 — 0 we see most
off-diagonal correlations are tightly clustered around p? while
most on-diagonal correlations are tightly clustered around ¢
so the ratio is roughly p?/¢?. In this limit, we approach the
original correlation game with hard constraints [3].

On the other hand when p grows, both the on-diagonal and
off-diagonal correlations grow. For these settings, the ratio
appears to asymptote to 0.2, which is the ratio achieved by
setting D = 0 and ¢ = 1.0 as in nonnegative similarity
matching [5]. This makes sense because when p is large,
XXT/T is large relative to D so [XXT/T — D]" is more
nearly equal to [XXT/T|T. Another way to see this is by
examining the updates for L

XXT
AL x

—uL—D (43)

When p is large, D becomes relatively unimportant so pul —
D =~ uL
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Fig. 1. Output-output correlations (elements of X X7T/T) for varying p.
Left: histograms of X XT/T for u € {0.5,1.0,2.0}. Decreasing p seems to
shift the distributions of both the on- and off-diagonal elements of X XT /T
downward and decrease the variance of these distributions. Right: we plot
the ratio of the average off-diagonal correlation to the average on-diagonal
correlation as a function of p. When g is small, this ratio is nearly equal to
p?/q>. As p grows this ratio appears to asymptote the same output-output
correlation ratio when ¢ = 1.0, D = 0.0.

VI. EXPERIMENTS WITH GRADIENT ASCENT AND GDA

We have introduced two algorithms, gradient ascent and
GDA, for solving the unsupervised learning problem of Eq.
(1). There are several ways in which the two algorithms might
yield different results.

1) The global optimum of the dual problem might not equal
the global optimum of the primal problem (1), as Eq.
(23) is only an inequality.

2) Gradient ascent might find a local optimum of the primal
problem (1) that is not a global optimum.

3) GDA might find a local optimum of the dual problem
(right hand side of Eq. 23) that is not a global optimum.

4) GDA might not converge.

To probe how important these issues are in practice, we
conducted numerical experiments with the gradient ascent and
GDA algorithms.

We used 64 neurons and set ¢ = 1.0,p = 0.3, = 1.0
and v = 1.0,k = 0.1. We ran both gradient ascent and GDA
using full batch updates with the first 1000 examples of the
MNIST handwritten digits dataset. We used batch GDA to
investigate duality, because the stochasticity of online GDA
could complicate comparisons.

For GDA, we randomly initialize W by drawing its elements
from a Uniform(0, 1) distribution, and then normalizing the
rows to sum to one. We initialize L to the identity matrix. We
set ny = 0.0005 and iy, = 0.004. The optimization over X
in Eq. (30) uses projected gradient ascent on X to find a local
optimum. We ignore the possibility that this could be a local
optimum that is not a global optimum.

For gradient ascent (12), we use the same randomly initial-
ized W to initialize X = UW, and a learning rate parameter
of nx /T = 0.01.

We train both algorithms for 20, 000 iterations, long enough
for convergence. In Fig. 2, we plot the values of both F'(X)
and R(W, L) along the GDA training trajectory. We compare
these values to the final value of F' returned by gradient

F(X) vs. Iter R(W, L) vs. Iter
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Fig. 2. Comparing F(X) and R(W,L) from gradient descent-ascent
algorithm with nr, /nw = 8.0 (solid curves) to final value of F(X) from
gradient ascent algorithm (dashed line). A logarithmic timescale is used for
the x-axis. There seems to be 2 distinct phases, the first occurs in the first
100 steps where R decreases rapidly the 2nd occurs after where R gradually
rises. Both gradient ascent and GDA yield solutions with similar value of the
objective F'(X).

ascent. We observe that all three values are nearly equal by
20, 000 iterations. In this particular numerical experiment, the
issues mentioned at the beginning of this section do not seem
problematic.

VII. STRONG DUALITY

We observed empirically that gradient ascent and GDA can
yield similar results. It would be interesting to find sufficient
conditions guaranteeing that the results are the same. To
address this question, we study whether the global solutions of
Egs. (1) and (23) are the same, i.e., whether the upper bound
in Eq. (23) is an equality. For the time being, we neglect the
remaining items in the list, i.e., whether these global solutions
are actually found by gradient ascent and GDA.

A global minimax point is not necessarily a local minimax
point [9].2 But for the following theorem, we will assume that
a global solution of the max-min problem in Eq. (23) is a local
solution. This simplifies the situation because a local solution
must be a KKT point. If a solution is not a KKT point, it is
of less interest as it cannot be a steady state of GDA anyway.

Theorem 1. Suppose that a global solution (W*, L*, X*) of
right hand side of Eq. (23) exists, and L* is positive definite.
Then the upper bound in Eq. (23) becomes an equality.

Before proving this theorem, we must take care of some
preliminaries.

Lemma 1. Suppose that (x*,y*) is a global minimax point of
f(x,y) with nonnegativity constraints, i.e., a global solution
of

min max f (x,¥)

(44)

Suppose that f is twice differentiable in a neighborhood
of (x*,y*), and f(x,-) is strongly concave for all X in a
neighborhood of x*. Then (x*,y™*) is a local minimax point.

2Standard optimization is simpler: a global solution is guaranteed to be a
local solution.



Proof. This is a variant of Theorem 23 of Ref. [9], which also
gives a precise definition of local minimax point. O

Lemma 2. A local minimax point with nonnegativity con-
straints is a KKT point.

Proof. This is a variant of Proposition 18 of [9]. O]

Definition 1.

S(L,X)=FW* L, X) (45)

where W* minimizes Eq. (23)

Lemma 3. If (L*, X*) is a global minimax point of S, and
L* = 0 then (L*, X*) must be a local minimax point, and
hence a KKT point.

Proof. If L* > 0, then for all L in a neighborhood of L*,
L > 0and S(L,-) is strongly concave. Apply Lemmas 1 and
2. O

Lemma 4. (From [10]) If (L*, X™*) is a saddle point of S,
ie. VX, L:

S(L*,X) < S(L*,X*) < S(L, X*) (46)

then minimax equality holds:

supinf S(L, X) = inf sup S(L, X) 47)
x L L X

Having taken care of the preliminaries, we now return to
Theorem 1.

Proof of Theorem 1. By the max-min inequality, we know
that for any fixed W

max min F(W, L, X) < minsup F(W, L, X) (48)
X L L x

Let W* be a maximum of the right hand side. If we can show

that equality holds for W = W*, then we are done.

Because we have assumed L* is positive definite, we can
apply Lemma 3 to show that (L*, X*) is a KKT point of
S(L, X).

Because we have assumed L* is positive definite, we know
that S(L*, X) is concave in X. From concavity in X and
the fact that X* is a KKT point, we know that S(L*, X*) >
S(L*, X) for all X.

Because we have assumed (L) is convex, we have that
S(L, X*) is convex in L. From convexity in L and the fact that
L* is a KKT point we also know that S(L*, X*) < S(L, X*)
for all L.

These two inequalities imply that (L*, X*) is a saddle point
of S. Lemma 4 tells us that the existence of a saddle point of
S implies minmax equality holds. Therefore when W = W*
equality holds in Eq. (48) O

Note that this proof does not require positive definiteness of
L for all W, just for W = W*. One might wonder whether
the L* > 0 condition is ever satisfied. For the special case
of nonnegative similarity matching, L* = X*X*T /T, which

is always positive semidefinite and typically will be positive
definite.

For the simulation shown in the previous section, L* is
not positive definite. However the magnitudes of the negative
eigenvalues are quite small in comparison to the positive
eigenvalues (Fig. 3). Therefore the potential problem of local
optima in Eq. (30) might not actually be a problem in this
example.

eigenvalues of L

3 4 I

eigenvalue

T
0 32 64

index

Fig. 3. Eigenvalues of L* after training with GDA. L* is not positive definite,
but the magnitudes of the negative eigenvalues are quite small. The ratio of
the most positive to the most negative eigenvalue is approximately -68. The
dashed line indicates the location of the first positive eigenvalue.

VIII. CONVERGENCE IN FAST INHIBITION REGIME

The preceding section provided a sufficient condition for
strong duality, i.e., for equality to hold in Eq. (23). But even
when strong duality holds, GDA might not find a solution
of maxy>oming>o R(W, L). In fact, GDA might not even
converge at all.

In this section, we empirically investigate convergence of
GDA using the same ®, ¥ defined in Egs. (7, 15) that were
studied in Section V. This time we vary the ratio of time scales
for inhibitory and excitatory plasticity, 7z, /nw .

For all training runs, we used ny = 0.0005. We explored
five different learning rates for 7z, giving five different ratios:
nr/mw € {0.50,1.0,2.0,4.0,8.0}. To ensure that the results
were not dependent on the finite step sizes used, we also
generated learning curves using the same five ratios, but with
both ny and 7n;, halved. We ensured that for each ratio, the
curve generated with both learning rates halved was similar
to the original curve, except rescaled horizontally by a factor
of 2. We present the convergence results in Fig. 4 and Fig. 5,
and show the learned output-output correlations and features
in Fig. 6 and Fig. 7, respectively.

We provide a summary of our main observations:

1) When T]L/UW > 4.0:

a) GDA appeared to converge.

b) GDA learned features that were qualitatively sim-
ilar to features learned from gradient ascent on F.

¢) GDA found X such that F/(X) was nearly equal
to the value from direct gradient ascent on F'.
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Fig. 4. Simulating the GDA-based neural network learning algorithm with
q = 1.0,p = 0.3, x = 1.0 for various inhibitory-excitatory plasticity ratios
nr/nw. When inhibitory plasticity is sufficiently slow (n/nw < 2.0)
learning does not appear to converge. Conversely, when inhibitory plasticity is
fast (L, /nw > 4.0), learning does appear to converge. Note that the updates
are non-stochastic and both 7y, and 7y are small. What appears to be noise in
these small ny, /nw curves actually appears to be oscillations when zoomed
in (see Fig. 5 for an example)

d) GDA learning curves did not seem to change much
by increasing 7z, /nw beyond 4.0.

2) When 7 /nw < 2.0

a) GDA did not appear to converge.

b) GDA dynamics exhibited oscillations whose am-
plitude increased with decreasing 7y, /nw .

¢) Decreasing nr,/nw lowered the averaged value of
F(X) along GDA trajectories.

We provide as follows one potential explanation for the
observation that when 7y /ny is sufficiently large, GDA
appears to converge and it yields X with similar value of
F(X) to the gradient ascent algorithm.

Setting the learning rate for inhibitory synapses large sug-
gests that L quickly moves to a location such that 9R/OL = 0.
Because we know that R(W, L) is strictly convex in L, this
suggests that L in fact finds the unique minimum L =~
argming,~, R(W, L’). Further, strict convexity in L suggests
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Fig. 5. Non-transient oscillations when 7y, /nw = 2.0. Top left: F(X) vs.
iter (this is just a zoomed in version of the 1z, /nyw = 2.0 curve in Fig. 4) Top
right: R(W, L) vs. iter. Bottom left: normalized gradient norms, specifically
the 1 norm of OR/OW divided by the average ¢1 norm of OR/OW from
19,000 to 20,000 iterations and similarly for L. Bottom right: normalized
synapse norms, specifically the ¢1 norm of W divided by the average ¢1
norm of WW from 19,000 to 20,000 iterations and similarly for L

gda: ni/nw=8.0 gda: ni/nw=1.0

Fig. 6. Comparing output-output correlation matrices after 20k steps of
a) gradient ascent algorithm b) gradient ascent-descent algorithm with
nr/nw = 8.0 c) gradient ascent-descent algorithm with nr /nw = 1.0.
When 7 /nw = 8.0, learning appears to converge and output-output
correlations appear qualitatively similar to output-output correlations from the
gradient ascent algorithm ({(z2) =~ ¢2 and (z;z;) ~ p? for ¢ # j). When
nr/nw = 1.0, learning does not appear to converge and after 20k steps we
observe that one of the neurons has (z2) > ¢2.

that small changes in W do not drastically change L, in other
words, O [argmin, 5, R(W, L')] /OW should be finite.
Because W is updating slowly, W effectively “sees” the
function miny, > R(W, L") which is continuous in W and the
updates for W are essentially just gradient ascent updates on a
continuous function which are generally expected to converge.
To understand why the converse does not hold, i.e. why
setting nyy large does not necessarily yield convergence, we
examine the behavior of R(W, L) for fixed L. In particular,
for some values of L, maxyy > R(W, L) does not even exist,



Fig. 7. Learned features after 20k steps of (top row) gradient ascent, (middle row) GDA with i1, /nyw = 8.0 (bottom row) GDA with 7, /nw = 1.0. Each
image shows one of the first 20 rows of W™, reshaped into the original 28x28 image space. We observe that features learned by gradient ascent and GDA
with nz, /nw = 8.0 appear qualitatively similar. Many of the features learned by GDA with iz /nw = 1.0 also appear qualitatively similar to those of
gradient ascent. However there are outlier features, especially the one in column 7, which corresponds to the one neuron in Fig. 6 with a high value of (:1:?}

at least for the form of ®(W) we consider.

This can be seen even in the simplest case when U, W, L, X
are all just non-negative scalars. In this situation, we can
directly X = WU/L and therefore analytically write R:

1 1 1
R(W,L) = 5W2U2/L — 50+ K)W? + FU(L) @9
For any L < WUTZK we have that R — oo and W — oco. When
nw 1s large, we might see oscillations as W quickly grows in
magnitude before L has enough time to stabilize the growth.

IX. CONCLUSION

We have examined two different algorithms for performing
the optimization of Eq. (1). The first algorithm directly maxi-
mizes F'(X) via projected gradient ascent on X. The second
constructs an upper bound maxyy >0 ming>o R(W, L) whose
maxmin points are yield an upper bound on F'. Projected
GDA is then used to find max min points.

Interestingly, the case where strong duality is not guaranteed
to hold is exactly the case where the inner optimization
maxx>o F (W, L, X) has the potential for multiple local op-
tima. This is the situation where L is not positive definite and
therefore F (W, L, -) is not strongly concave.

We have also empirically investigated convergence proper-
ties of GDA. Unlike gradient ascent, which is guaranteed to
at least find a local maximum of F', GDA is not guaranteed
to converge to a steady state, and even if it does, the relation
of the steady state to the max min points of the objective IR
is unclear. When inhibitory plasticity was slow, we observed
that learning did not appear to converge. When inhibitory
plasticity was fast, we observed that learning converged to a
point W*, L*, X* such that R(W*, L*) that was very nearly
equal to F(X™).

We gave an informal explanation of convergence in the
fast inhibitory plasticity regime as a consequence of the strict
concavity assumption on L. We used this to argue that W
effectively did gradient ascent on ming >o R(W,L’). Lack
of convergence in the slow inhibitory plasticity regime was
explained via the observation that maxy, > R(W, L) was not
guaranteed to exist for arbitrary L.

An even more informal explanation is that for these learning
rules, inhibitory plasticity is a key source of negative feed-
back regulating feedforward excitation (there is also negative
feedback in the update rules for W resulting from the term

—&’(W)). When this negative feedback is too slow, feedfor-
ward excitation is allowed to run away before the inhibition
has time to catch up and stabilize growth. This may explain
the oscillations of W and L seen in Fig. (5).

Convergence of GDA would be easy to prove if R were
concave-convex. In our case, R is guaranteed to be convex
in L but is generally nonconcave in W. Lyapunov function
proofs [6], [7] guarantee convergence of nonconcave-convex
GDA in the limit of fast L dynamics, but should be extended
to cover projected GDA. The approach of Ref. [8] should also
be applicable, but also should be extended to projected GDA.

It would be interesting to explore other ways to stabilize
learning dynamics besides modifying 77, /nw . We also wonder
whether learning instabilities analogous to the ones we have
simulated might be observed in real brains.
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