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Value Function Problem

T < I ] T def < I ]
V (CE) — 447'N’7'(m,7r) _Z(T)_ ; Q (QZ, a) — 447-~7'(a:,a,,7r) _Z(T)_ :

"how does the current action affect future outcomes?"
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Credit Assignment Problem

P(A = A:|f(T) = f(Ttio0), Xt = :13))

[(Ag; f(T00) | Xt = @) = Brur(a,m) |08 ( P(A = As| X} = x)

'given an outcome, how relevant were past decisions?"
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Credit Assignment Problem - Why is it important?

Rare events require an infeasible number of
samples to obtain an accurate estimate.



Credit Assignment Problem - Why is it challenging?

Issue 1: Variance - low sample efficiency



Credit Assignment Problem - Why is it challenging?

Issue 2: Partial observability - cannot bootstrap.



Credit Assignment Problem - Why is it challenging?
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Issue 3: Time as a proxy - rely on time as the sole metric.

n—1
A™(z,a) = Y V¥R +7"V(Xy) — V().
k=0
variance bias —> best n?



Credit Assignment Problem - Why is it challenging?

“What if2”

Issue 4: No counterfactuals - only update actions serendipitously occur.



Credit Assignment - Mutual Information Perspective

P(A = A:|f(T) = f(Ttio0), Xt = :13))

[(Ag; f(T00) | Xt = @) = Brur(a,m) |08 ( P(A = As| X} = x)

'given an outcome, how relevant were past decisions?"
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Credit Assignment - Mutual Information Perspective

I P(A= A/ f(T) = Ttioo)s Xt = _
I[(At; f(Ttioo)| Xt = 7) = Er7(a,m) |log ( ( ]P)(‘;];(:)At‘gt = i‘) $)>

density ratio depicts relevance of
actions and outcomes given states
h(a|z,m,f(T))
m(alz)

Future States
Predictive Coding

def

hk(alxaﬂ-a y) — ]P)’TNT(ZU,T(') (AO — a‘Xk — y)

can be learned by InfoNCE and other Future Returns

supervised learning method. )
P 5 h,(alz,n,2) QIP’TNT(:E,W) (AO = a|Z(T) = z)



Credit Assignment - Conditioning on Future States

Future States

def

hk(a‘lﬂ,ﬂ', y) — ]P)TNT(QZ,?T) (AO — G‘Xk — y)

Predictive Coding

Bayes’ rule:
hi(alz,my)  P(Xk=ylXo=2,40=0a,7) Prot(z,a,m) (X =)

71-(CL‘ZE) P(Xk — y‘XO — xvﬂ-) IP)TNT(x,W) (Xk — y) |

it | rts with
> 1 when a and y are positively correlated any trajectory starts with x

< 1 when a and y are negatively correlated

lower entropy



Credit Assignment - Conditioning on Future States

h(alz,m,f(7))
m(a|x) Future States

hi(alx,m,y) = = P, 7 (amx) (Ao = a| Xk =1y).

Predictive Coding

Bayes’ rule:
hi(alz,my)  P(Xk=ylXo=2,40=0a,7) Prot(z,a,m) (X =)

71-(Cllil;) P(Xk — y|X0 — I,ﬂ') IP)7'N7'(:I:,7r) (Xk — y) |
any trajectory starts with x
Thm. 1
_ ] hi(alx, Xk)
= Q" (z,a) =1(z,a) + Ezir@n Z . (a2 Ry|.

Tk>1
counterfactual importance sampling



Credit Assignment - Conditioning on Future States

i hi(a|lr, X
Qﬂ-(x7 a) — T(-’L.a a/) —I— 44’7'NT(£B,7T) Z & |a‘x )Rk_ R
k>1
counterfactual importance sampling

- h X -
A7 (2,0) = 1(2,0) ~ 17(2) + Eyarom | 30 (PHAE R 1) ep,

5 m(a|x)

= 0, when irrelevant

Algorithm:

(a| X, X¢)
m(alXs)

hﬂ(a‘stXT)

R T'—s
CTY T (el

T—1
h
= Q% (Xs,a) = 7(Xs,a) + Z fYt—S & V(XT).

t—s+1



Credit Assignment - Conditioning on Future States

QW (xv CL) — T’(:B, a) T 4:TNT(CB,7T) Z Y

k>1
counterfactual importance sampling
infeasible, time-dependent

= A'(z,a) =7(x,0) = 7" (2) + Er 0 7(2,m)

k hk(a|x7 Xk)

>

k>1

m(alz)

hi(a|lr, Xi)

Ry |.

m(alz)

1)'7kRk-

= 0, when irrelevant

Time-independent version



Credit Assignment - Conditioning on Future States

Time-independent version

when [3 =Y
hﬂ(a‘CB, Xk)
m(a|z)

1)'YkRk-

=~ Aw(xa CL) — 7“(33, a) o rw(x) T 4:’7'NT(33,7T) Z (

k>1

PG Algorithm . £TNT($O,W9) [Z'Yk Z VWG(“‘Xk)Qm (Xka a)]

k>0 a

HCA | State




Credit Assignment - Conditioning on Future Returns

h(a|z,m,f(T))
m(a|x) Future Returns

de

h,(a|lz, T, 2) ZfIPJTNT(xm) (Ao = al|Z(7) = 2).

Predictive Coding

Bayes’ rule:

m(alz) P(Z(r)=2) _ Prig@m (Z(1) = 2)

hz(a‘mﬂ-‘-v Z) B ]P)(Z(T) — Z‘At — CL) B ]P)TNT(ZU,G,,T(') (Z(T)

)

trajectories start with x and a

Thm. 2

m(alz)
alx, Z(T))} '

importance sampling

= |Vl (CE) — 437.,\,7-(:,3’&,77) {Z(T) P (



Credit Assignment - Conditioning on Future Returns

ey

VTi(z) = Ly T (2,a,7) {Z(T) h-(alz, Z(T))

importance sampling

m(alz)

- ANza) = ETNT(m’a’”)[(l hz(a|a:,Z(7')))Z(T)]'

“credit” - how much a single action
contributed to obtaining a return

credit > O if action a has made achieving Z more likely

credit < O if other actions contributed to achieving Z more than a



Credit Assignment - Conditioning on Future Returns

<

Vﬁ(@ = T (2,a,7) {Z(T )h (

m(a|z)
alx, Z(T))] '

importance sampling

m(alz)

- Al@a)=E-or <$»a’”>[(1 hz(a|a:,Z(T)))Z(T)]'

“credit” - how much a single action
contributed to obtaining a return

PG Algorithm VoV (20) = Er T (zo,m0) [Z v*V log g (Ak| Xx ) A* (X, Ak)] ,

k>0
=

HCA | Return (Al X.)

(As|Xs, Zs)

A*(X,, Ag) = (1 -

)ZS where Z, = 3,7 °R:.

valid “baseline”- even if dependent of actions.



Shortcut

o counter-factual credit assignment
(issue 4), when the long path is
taken more frequently than the
shortcut path, counter-factual
updates become increasingly
effective

o the use of time as a proxy for
relevance (issue 3) is shown to be
only a heuristic, even in a fully-

observable MDP.

Experiments
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The relevance for the states
along the chain is not
accurately reflected in the long
temporal distance between
them and the goal state.



Experiments

Noise 0 = 0, Bootstrap 1s Robustness to noise
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o Bootstrapping naively is inadequate in :2- Noise 0 = 2, Monte Carlo

this case (issue 2), but HCA is able to 1.0 -
carry the appropriate information .

O finte ronard more b wreoent 5 o Return-conditional HCA is
| | w ise i 04 - .
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assignment is a heuristic (issue 3).



Gaussian N(1, 1.5)

\:’{,g
\,\:‘
@ Gaussian N(2, 1.5)

Ambiguous bandit.

o variance (issue 1) with some
probability € of crossover.

o a lack of counter-factual updates
(issue 4) difficult to tell whether an
action was genuinely better, or just
happened to be on the tail end of
the distribution.

o partial observability of the final
state (issue 2)

Value

Value

Experiments
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Hindsight Credit Assignment

I P(A=A{f(T) = f(Tt:00), Xt = _
I(Ag; f(T00) | Xt = @) = ST () 108 ( | IP)(‘;];(:) At\];t = ;) x))

density ratio depicts relevance of
actions and outcomes given states

Future States

def

hk(a|aj7ﬂ-7 y) — ]P)TNT(ZE,TF) (AO — af‘Xk — y)

Predictive Coding

can be learned by InfoNCE and other Future Returns

supervised learning method. ’
P 5 hz(a‘xa , Z) g]P)TNT(:c,ﬁ) (AO — CL‘Z(T) — Z)



Hindsight Credit Assignment

Any Theoretical Guarantee or
Empirical Evidence ofiimprovement?



