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How to learn diverse features?



Neural Networks with All-to-All Anti-Hebbian Inhibition Are Common

® All-to-All Net [Fsldiak 1990; Pehlevan and
Chklovskii, 2014; Hu et al, 2014; Seung and Zung, 2017] <
Neurons directly inhibits each other to
encourage feature diversity.
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[Hu et al, 2014]



All-to-all inhibition is not biologically plausible.

Can we learn diverse features with only a few inhibitory neurons?



Today we will show

® A model with a few inhibitory neurons that learns diverse features.
® Brain-inspired, biologically plausible, unsupervised learning.

® Explore potential application to a language task.
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® Given a sensory input U, compute steady
neural activities X and Y:
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feedforward input /
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self-regulation / sensitivity feedback inhibition

of neuron i to inputs
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A Brain-Inspired Architecture with Disynaptic Recurrent Inhibition
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A Brain-Inspired Architecture with Disynaptic Recurrent Inhibition
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Correlation

® “Effective Objective”: ~ “Softened”

Correlation Game [Luther, Yang, & Seung, 2019]:

T T
vl () -2v (57))
X >0 T 2 T

input-output output-output
correlation correlation

14



Related work

E-l Net

e King el al.’s E-1 Net [king et al., 2013
E I_) I-neurons decorrelate the activity

of the E-neurons by suppressing
CMl M redundant spiking activity.
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Related work

O Principal O [nter-neurons

oHebbian e anti-Hebbian synapses

[Pehlevan & Chklovskii, 2015]

® Constrained Similarity-Matching
[Pehlevan and Chklovskii, 2015] .
) interaction mediated by
Interneurons
II) rate-based model
lI) derived from a constrained
similarity principle

V) neurons are linear
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What're potential ML applications?

Sensory
Neurons

Layer of
E-Neurons

Layer of
I-Neurons
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Task Description of Topic Models
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Topics Documents .
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® Fach document is a mixture of topics.

® Fach topic is a distribution of words.

® Fach word is drawn from one of those
topics.
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Task Description of Topic Models
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Generative View:

® Fach document is a mixture of topics.

® Fach topic is a distribution of words.

® Fach word is drawn from one of those
topics.

Task of Topic Modeling:

® Given documents, extract topics
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Applying Disynaptic Neural Network to Topic Models

Non-Generative Method:

Word x Document Matrix

U X

S-Neurons E-Neurons
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Applying Disynaptic Neural Network to Topic Models

Non-Generative Method:

® Input U.; is the t-th document in
the bag-of-words representation.

# S-Neuron = Size of vocabulary

Word x Document Matrix

S-Neurons E-Neurons
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Applying Disynaptic Neural Network to Topic Models

Word x Document Matrix

S-Neurons

E-Neurons

Non-Generative Method:

® Input U.; is the t-th document in
the bag-of-words representation.

® | ecarned S-E connections W,. is the

i-th topic (relevance to each word).

# E-Neuron = Number of Topics
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Applying Disynaptic Neural Network to Topic Models

Word x Document Matrix

S-Neurons
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Non-Generative Method:

® Input U.; is the t-th document in
the bag-of-words representation.

® | ecarned S-E connections W,. is the

i-th topic (relevance to each word).

® F-neuron activity Xij¢is the score of
topic assignment.
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Applying Disynaptic Neural Network to Topic Models

Non-Generative Method:

® Input U.; is the t-th document in
the bag-of-words representation.

® | earned S-E connections Wi. is the
i-th topic (relevance to each word).

® F-neuron activity Xij¢is the score of

U X topic assignment.

Word x Document Matrix

S-Neurons E-Neurons .. : :
Maximizing topic-document correlation,

while minimizing topic-topic correlation.
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Emerging Topics in a Network with Disynaptic Recurrent Inhibition

Intertopic Distance Map (via multidimensional scaling)

" @ T~ Topic 4: “College”

v student / college / university / teacher / school /

painting / exam / score / continue / ap / art / movement
7 / data

11
14 12

PCH 1

Topic 3: “Image Classification”
; image / file / label / classification / letter / class / model
/ one / trained / improving / can / photo / recognition

16
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Emerging Topics in a Network with Disynaptic Recurrent Inhibition

14

PC1

Intertopic Distance Map (via multidimensional scaling)

16

PC2

Topic 10: “Twitter”

tweet / trump / donald / twitter / text / speech / time /
presidential / someone / user / content / using /
debate

Topic 12: “Election”
election / vote / party / campaign / presidential /
candidate / result / political / state / contribution /
position / content / voting

11

Topic 2: “Games”
game / player / team / match / pokemon / play /
season / league / data / every / point / stats / played
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Controlling topic-word sparsity

-
w
|

—
—)
|

Relevance Score (W)
- -
(- N
l |

o ©
N w
| |

—
—l
|

AD(W)

¢(W)ia .= oW, = YWia + K zb: Wi

“completion” between excitatory synapses

Relevance Score (W)
l

II K/Y = 1/50, topic “tweet”
I-----_______: ;

X . D 5
2 Q O o ) SO W@ o SR A 4
2 & @ & ‘@ @ (Q \ & ‘o e & D o ¥ A g
LRSI &£ S FEY S & & & T
Q@ & §

sparse feature when k/Y is large — fewer key words for each topic
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Controlling document-topic sparsity
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Discussion
® Neural networks with disynaptic recurrent inhibition can approximate the
“softened” correlation game principle.
e With only a few inhibitory neurons it can learn diverse features.

e Application to topic models shows that our neural network can discover
topics which are similar to LDA with controllable sparsity.

® Future work:
® Potential efficiency gain of a non-generative model?

® | earning semantic embeddings of words?
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