

Shapley Values, Attention Flows, and Faithful Explanations

"Tony" Runzhe Yang

https://runzhe-yang.science

Alice (alone)

Bob (alone)

3 cookies 🎲 / hour

What's the <u>best way</u> to distribute cookies?

Define "the best division":

1. [Efficiency] We don't want to waste cookies... all cookies should belong to either Alice or Bob.

- 1. [Efficiency] We don't want to waste cookies... all cookies should belong to either Alice or Bob.
- 2. [Null Player] If someone has no contribution at all, he should get nothing.

- 1. [Efficiency] We don't want to waste cookies... all cookies should belong to either Alice or Bob.
- 2. [Null Player] If someone has no contribution at all, he should get nothing.
- 3. **[Symmetry]** If two people have exact same contribution, they should get the same number of cookies.

- 1. [Efficiency] We don't want to waste cookies... all cookies should belong to either Alice or Bob.
- 2. [Null Player] If someone has no contribution at all, he should get nothing.
- 3. **[Symmetry]** If two people have exact same contribution, they should get the same number of cookies.
- 4. [Linearity] If they collaborate for a longer time, the strategy of division shouldn't change.

Players: $N = \{1, ..., n\}$

Coalitions: $S \subseteq N$ {} { $\check{\wp}$ } { $\check{\wp}$ } { $\check{\wp}$ }

Payoff Function: $v: 2^N \mapsto \mathbb{R}$ $v(\{\}) = 0$

 $v(\{\widehat{00}\}) = 5x$ $v(\{\widehat{00}\}) = 3x$ $v(\{\widehat{00}, \widehat{00}\}) = 10x$

- 1. [Efficiency] We don't want to waste cookies... all cookies should belong to either Alice or Bob.
- 2. [Null Player] If someone has no contribution at all, he should get nothing.
- 3. **[Symmetry]** If two people have exact same contribution, they should get the same number of cookies.
- 4. [Linearity] If they collaborate for a longer time, the strategy of division shouldn't change.

Players: $N = \{1, ..., n\}$

Coalitions: $S \subseteq N$ {} { \overline{io} } $\{\mathbf{\underline{oo}}, \mathbf{\underline{oo}}\}$

Payoff Function: $v: 2^N \mapsto \mathbb{R}$ $v(\{\}) = 0$

 $v(\{\mathbf{o}\}) = 5\mathbf{x}$ $v(\{\mathbf{\hat{oo}}\}) = \mathbf{3x}$ $v(\{\mathbf{0}, \mathbf{0}\}) = \mathbf{10x}$

- **Division:** $\{\phi_i(v)\}$
- 4 axioms of Shapley values:
- 1. [Efficiency] $v(N) = \sum_{i \in N} \phi_i(v)$
- 2. [Null Player] $v(S \cup \{i\}) v(S) = 0, \forall S \subseteq N \setminus \{i\}$ $\Rightarrow \phi_i(v) = 0$
- 3. [Symmetry] $v(S \cup \{i\}) v(S) = v(S \cup \{j\}) v(S)$, $\Rightarrow \phi_i(v) = \phi_i(v) \qquad \forall S \subseteq N \setminus \{i, j\}$
- 4. [Linearity] $\phi_i(v+w) = \phi_i(v+w)$ $\phi_i(\alpha v) = \alpha \phi_i(v), \forall i \in N$

 $\phi_i(v) = \frac{1}{n!} \sum_R \left[v(P_{R[:i]} \cup \{i\}) - v(P_{R[:i]}) \right]$

Shapley, 1953

Shapley value exists and is unique

subset of players that precede the player *i*

 $\phi_i(v) = \frac{1}{n!} \sum_{R} \left[v(P_{R[:i]} \cup \{i\}) - v(P_{R[:i]}) \right]$

all possible permutations of *n* players

marginal contribution of the player *i* to the coalition *P*_{*R*[:*i*]} *U* {*i*}

Shapley value exists and is unique

marginal contribution of the player *i* to the coalition $P_{R[:i]} \cup \{i\}$

Shapley value is the average marginal contribution to all ordered coalitions.

Alice's marginal contribution

Alice

Alice should get 6x, and Bob should get 4x.

Model Prediction as a Cooperative Game

Players: $N = \{1, ..., n\}$ -> possible subjects of the explanation, e.g., tokens

Coalitions: $S \subseteq N$ {} { $\overline{100}$ } { $\overline{100}$ }

 $\{\mathbf{OO}, \mathbf{OO}\}$ -> e.g., all non-masked out Tokens

Payoff Function: $v: 2^N \mapsto \mathbb{R}$ $v(\{\}) = 0$

-> e.g., quality of prediction

Credit assignment: $\{\phi_i(v)\}$

-> importance accorded to subjects

Why making this connection?

- We can provide **more specific** interpretations of model behavior, backed by theoretical guarantees.
- there's no canonical way to aggregate units in most current methods.
- This will give us explanations that are both **fast** and **faithful**.

• We can understand the **role of groups of tokens** by treating them as a single player;

Attention Weights Are Not Faithful Explanations

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

> original α $f(x|\alpha, \theta) = 0.01$

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

> adversarial $\tilde{\alpha}$ $f(x|\tilde{\alpha}, \theta) = 0.01$

Attention Weights Are Not Shapley Values

attention weights are Shapley Values.

Ethayarajh and Jurafsky, 2021

Proposition 1. If some player is attended to more than another, there is no TU-game (N, v) for which

Attention Weights Are Not Shapley Values

Intuition: A player's contribution to the total payoff ($\Sigma_i = 1$) is rarely equal to the total attention paid to it, so the latter cannot be its Shapley Value (Φ_i)...

Ethayarajh and Jurafsky, 2021

.

.

.

4

Abnar and Zuidema, 2020

Attention Flows Can be Shapley Value

Proposition 2. Consider a TU-game (N, v), where $N = \{1, ..., n\}$ players are all from the same layer. Let f denote the flow obtained by running a max-flow algorithm on the graph defined by the self-attention matrix, where the capacities are the attention weights. Let v(S) = |f(S)|, the value of the flow when only permitting flow through players in the coalition $S \subseteq N$. Then for each player i, its total outflow $|f_o(i)|$ is its Shapley Value.

Attention Flows Can be Shapley Value

Intuition: when all players are from the same layer of a network, and the payoff is the total flow through the network, a player *i*'s total outflow is independent of others'...

Ethayarajh and Jurafsky, 2021

,

Abnar and Zuidema, 2020, Dosovitskiy et al. 2021

.

Input

Attention

.

leave-one-out values are Shapley Values.

Ethayarajh and Jurafsky, 2021

Proposition 3. If $\exists i \in N$ such that player *i* is not a null player even when excluding the coalition $N \setminus \{i\}$, then there is no TU-game (N, v) for which

Leave-One-Out Values Are Not Shapley Values

Intuition: when small coalitions matter more than the largest one... e.g. if two representations played a critical role in a prediction but only one was necessary — then leave-one-out would assign each a value of zero.

$$\Phi_i(v) = 0.5$$
$$LOO_i(v) = 0$$

Ethayarajh and Jurafsky, 2021

*When to use leave-one-out values? *Flexibility in the choice of payoff functions. *Generalized cooperative game with multiple actions.

Does the theory make sense ... ?